
Choose Your WoW!
A Disciplined Agile Delivery Handbook
for Optimizing Your Way of Working

Scott W. Ambler and Mark Lines
Foreword by Jonathan Smart

Hundreds of organizations around the world have already benefited from Disciplined
Agile Delivery (DAD). Disciplined Agile (DA) is the only comprehensive tool kit available for
guidance on building high-performance agile teams and optimizing your way of working
(WoW). As a hybrid of all the leading agile and lean approaches, it provides hundreds
of strategies to help you make better decisions within your agile teams, balancing
self-organization with the realities and constraints of your unique enterprise context.

The highlights of this handbook include:

• As the official source of knowledge on DAD, it includes greatly improved and
enhanced strategies with a revised set of goal diagrams based upon learnings from
applying DAD in the field.

• It is an essential handbook to help coaches and teams make better decisions
in their daily work, providing a wealth of ideas for experimenting with agile and
lean techniques while providing specific guidance and trade-offs for those
“it depends” questions.

• It makes a perfect study guide for Disciplined Agile certification.

Why “fail fast” (as our industry likes to recommend) when you can learn quickly on
your journey to high performance? With this handbook, you can make better
decisions based upon proven, context-based strategies, leading to earlier success
and better outcomes.

A Disciplined Agile Delivery Handbook for Optimizing
Your Way of Working

Scott W. Ambler and Mark Lines

C
ho

ose Yo
ur W

oW
!

A Disciplined Agile Delivery Handbook for Optimizing Your Way of Working

S
cott W

. A
m

b
ler

and
 M

ark Lines

Scott W. Ambler and Mark Lines are cocreators of PMI Disciplined Agile and authors of
several books about agile approaches. They have decades of experience implementing
agile and lean approaches at organizations around the world and are both sought-after
keynote speakers.

Choose Your WoW!

Choose Your WoW!

A Disciplined Agile Delivery Handbook
for Optimizing Your Way of Working

Scott W. Ambler

 Mark Lines

Version: 1.1

Library of Congress Cataloging-in-Publication Data has been applied for.

ISBN: 9781628256505

Published by: Project Management Institute, Inc.

 14 Campus Boulevard

 Newtown Square, Pennsylvania 19073-3299 USA

 Phone: +610-356-4600

 Fax: +610-356-4647

 Email: customercare@pmi.org

Internet: www.PMI.org

©2020 Project Management Institute, Inc. All rights reserved.

Our copyright content is protected by U.S. intellectual property law that is recognized by most countries. To

republish or reproduce our content, you must obtain our permission. Please go to

http://www.pmi.org/permissions for details.

PMI, the PMI logo, PMBOK, OPM3, PMP, CAPM, PgMP, PfMP, PMI-RMP, PMI-SP, PMI-ACP, PMI-

PBA, PROJECT MANAGEMENT JOURNAL, PM NETWORK, PMI TODAY, PULSE OF THE

PROFESSION and the slogan MAKING PROJECT MANAGEMENT INDISPENSABLE FOR BUSINESS

RESULTS. are all marks of Project Management Institute, Inc. For a comprehensive list of PMI trademarks,

contact the PMI Legal Department. All other trademarks, service marks, trade names, trade dress, product

names and logos appearing herein are the property of their respective owners. Any rights not expressly

granted herein are reserved.

To place a Trade Order or for pricing information, please contact Independent Publishers Group:

Independent Publishers Group

Order Department

814 North Franklin Street

Chicago, IL 60610 USA

Phone: +1 800-888-4741

Fax: +1 312-337-5985

Email: orders@ipgbook.com (For orders only)

For all other inquiries, please contact the PMI Book Service Center.

PMI Book Service Center

P.O. Box 932683, Atlanta, GA 31193-2683 USA

Phone: 1-866-276-4764 (within the U.S. or Canada) or +1-770-280-4129 (globally)

Fax: +1-770-280-4113

Email: info@bookorders.pmi.org

Printed in the United States of America. No part of this work may be reproduced or transmitted in any form

or by any means, electronic, manual, photocopying, recording, or by any information storage and retrieval

system, without prior written permission of the publisher.

The paper used in this book complies with the Permanent Paper Standard issued by the National Information

Standards Organization (Z39.48—1984).

10 9 8 7 6 5 4 3 2 1

http://www.pmi.org/
http://www.pmi.org/permissions
mailto:orders@ipgbook.com
mailto:info@bookorders.pmi.org

 iii

FOREWORD

All models are wrong but some are useful
—George Box, 1978

You are special; you are a beautiful and unique snowflake. So are your family, your friends,
your communities, your team, your peers, your colleagues, your business area, your
organization. No other organization has the same collections of people, the same behavioral
norms, the same processes, the same current state, the same impediments, the same
customers, the same brand, the same values, the same history, the same folklore, the same
identity, the same “this is the way we do things round here,” as yours does.

Your organization’s behavior is emergent. The whole is greater than the sum of the parts,
the whole has unique properties that the individuals don’t have. Acting in the space, changes
the space. Individual and collective behaviors mutate and self-organize on a change-initiating
event. Interventions are irreversible, like adding milk to coffee. The system changes. People
don’t forget what happened and what the outcome was. The system learns. Next time, the
response to the change event will be different, either for the better or for the worse, reflecting
what happened last time and based on incentivization. Not only are your contexts unique,
they are constantly changing and changing how they change.

With this uniqueness, emergence, and adaptation, it is not possible to have one set of
practices which will optimize outcomes for every context. One set of practices might improve
outcomes for one context at one point in time. Over time, as the system changes with new
impediments and new enablers, it will no longer be optimal. One size does not fit all. There is
no snake oil to cure all ills. Your organization has tens, hundreds, or thousands of contexts
within contexts, each one unique. Applying one size fits all across many contexts may raise
some boats; however, it will sink other boats and hold back many more boats from rising.

How practices are adopted is also important, not only what the practices are. For lasting
improvement and to apply an agile mindset to agility, the locus of control needs to be internal.
People need to have autonomy and empowerment within guardrails to be able to experiment
in order to improve on desired outcomes. High alignment and high autonomy are both
needed. Not an imposition top down, which is disempowering, with the locus of control being
external. With imposition, people will not take responsibility for what happens, and will
knowingly do things which are detrimental, a behavior known as agentic state.

Disciplined Agile (DA) is designed to cater to these realities, the characteristics of
uniqueness, emergence, and adaption. Disciplined Agile provides guardrails, guidance, and
enterprise awareness. It is unique in this regard. It provides a common vocabulary, minimal
viable guardrails, which in turn enables empowerment and autonomy for teams and teams of
teams to improve on their outcomes how they see fit, with an internal locus of control. Not
everyone should follow a mandated, synchronized, iteration-based approach, for example. In
my experience, in a large organization with more than one context, synchronized iterations
suit one context (e.g., many teams on one product with a low level of mastery and with
dependencies which have not been removed or alleviated) and do not suit 99 other contexts.
It is not applying an agile mindset to agility. Some business areas are better off adopting a
Kanban approach from the beginning, especially if there is a pathological culture where
messengers are shot. Evolution over revolution stands a chance of progress. Revolution will
struggle; with a lack of psychological safety, the antibodies will be strong. Some business areas,
with people who have been working this way in islands of agility for 20+ years and with

 iv

psychological safety, may choose to take a more revolutionary approach, as the soil is more
fertile, people are more willing, and failed experiments are viewed positively.

Disciplined Agile enables a heterogeneous, not homogeneous, approach across diverse,
complex organizations. It includes principles of “Choice is Good,” “Context Counts,” and
“Enterprise Awareness.” It enables the discipline that organizations need, while not forcing
round pegs into square holes. It provides a common vocabulary and, with the process goals,
it provides options to consider in your unique context with varying levels of mastery. This
requires people to think rather than follow orders, to take ownership and experiment to
achieve specific outcomes, not pursue agile for agile’s sake. This is harder than following
prescription or following a diktat, it requires servant leadership and coaching, in the same way
as learning to drive, ski, play a musical instrument, or play in an orchestra or a team sport. As
one size does not fit all, as there is no prescription (for example, it is a fallacy to copy “the
Spotify Model” firm-wide, which even Spotify® says is not the Spotify Model), this context-
sensitive, invitation-over-imposition approach leads to better outcomes and is more likely to
stick, as it has come from within, the locus of control is internal, and it is owned. There is no
one else to blame and no one artificially keeping the elastic band stretched. It starts to build a
muscle of continuous improvement.

Within Disciplined Agile, if teams choose to adopt Scrum; a Scrum-scaled pattern such as
LeSS, SAFe®, Nexus®, or Scrum at Scale; or adopt an evolutionary pull-based, limited work-
in-progress approach, with a view that it will optimize outcomes in their unique context, they
are free to do so. #allframeworks, not #noframeworks or #oneframework. Across an
organization, DA provides the minimal viable commonality as well as guidance, which is
needed for anything other than the simplest of firms.

The job you are hiring Disciplined Agile to do is to enable context-sensitive, heterogeneous
approaches to agility, which will maximize outcomes organization-wide. As with everything,
treat it as a departure point, not a destination. As your organization-wide level of mastery
increases, keep on inspecting and adapting. This book is an indispensable guide for those
looking to optimize ways of working in heterogeneous organizations.

Jonathan Smart @jonsmart
Enterprise Agility Lead, Deloitte

Former Head of Ways of Working, Barclays

 v

PREFACE

Software development is incredibly straightforward, and if we may be so bold, it is very likely
the simplest endeavor in modern organizations. It requires very little technical skill at all, requires
little to no collaboration on the part of developers, and is so mundane and repetitive that anyone
can create software by following a simple, repeatable process. The handful of software
development techniques were established and agreed to decades ago, are easily learned in only a
few days, and are both well accepted and well known by all software practitioners. Our
stakeholders can clearly communicate their needs early in the life cycle, are readily available and
eager to work with us, and never change their minds. The software and data sources created in
the past are high quality, easy to understand and to evolve, and come with fully automated
regression test suites and high-quality supporting documentation. Software development teams
always have complete control of their destiny, and are supported by effective corporate
governance, procurement, and financing practices that reflect and enable the realities we face.
And, of course, it is easy to hire and retain talented software developers.

Sadly, very little if anything in the previous paragraph is even remotely similar to the
situation faced by your organization today. Software development is complex, the
environments in which software developers work is complex, the technologies that we work
with are complex and constantly changing, and the problems that we are asked to solve are
complex and evolving. It is time to embrace this complexity, to accept the situation that we
face, and to choose to deal with it head on.

Why You Need to Read This Book

One of the agile principles is that a team should regularly reflect and strive to improve their
strategy. One way to do that is the sailboat retrospective game, where we ask what are the
anchors holding us back, what rocks or storms should we watch out for, and what is the wind
in our sails that will propel us to success. So let’s play this game for the current state of agile
product development in the context of someone, presumably you, who is hoping to help their
team choose and evolve their way of working (WoW).

First, there are several things that are potentially holding us back:
1. Product development is complex. As IT professionals, we get paid a lot of

money because what we do is complex. Our WoW must address how to approach
requirements, architecture, testing, design, programming, management,
deployment, governance, and many other aspects of software/product
development in a myriad of ways. And it must describe how to do this throughout
the entire life cycle from beginning to end, and also address the unique situation
that our team faces. In many ways, this book holds up a mirror to the complexities
faced by software developers and provides a flexible, context-sensitive tool kit to
deal with it.

2. Agile industrial complex (AIC). Martin Fowler, in a conference keynote in
Melbourne in August 2018, coined the phrase “agile industrial complex” [Fowler].
He argued that we are now in the era of the AIC, with prescriptive frameworks
being routinely imposed upon teams as well as upon the entire organization,
presumably to provide management with a modicum of control over this crazy agile
stuff. In such environments, a set of processes defined by the chosen framework
will now be “deployed”—whether it makes sense for your team or not. We are
deploying this, you will like it, you will own it—but don’t dream of trying to change
or improve it because management is hoping to “limit the variability of team

 vi

processes.” As Cynefin advises, you can’t solve a complex problem by applying a
simple solution [Cynefin].

3. Agile growth greatly exceeded the supply of experienced coaches. Although
there are some great agile coaches out there, unfortunately their numbers are
insufficient to address the demand. Effective coaches have great people skills and
years of experience, not days of training, in the topic that they are coaching you
in. In many organizations, we find coaches who are effectively learning on the job,
in many ways similar to college professors who are reading one chapter ahead of
their students. They can address the straightforward problems but struggle with
anything too far beyond what the AIC processes inflicted upon them deign to
address.

There are also several things to watch out for that could cause us to run aground:

 False promises. You may have heard agile coaches claim to achieve 10 times
productivity increases through adoption of agile, yet are unable to provide any
metrics to back up these claims. Or perhaps you’ve read a book that claims in its
title that Scrum enables you to do twice the work in half the time [Sutherland]?
Yet the reality is that organizations are seeing, on average, closer to 7–12 %
improvements on small teams and 3–5 % improvements on teams working at
scale [Reifer].

 More silver bullets. How do you kill a werewolf? A single shot with a silver bullet.
In the mid-1980s, Fred Brook taught us that there is no single change that you
can make in the software development space, no technology that you can buy, no
process you can adopt, no tool you can install, that will give you the order of
magnitude productivity improvement that you’re likely hoping for [Brooks]. In
other words, there’s no silver bullet for software development, regardless of the
promises of the schemes where you become a “certified master” after two days of
training, a program consultant after four days of training, or any other quick-fix
promises. What you do need are skilled, knowledgeable, and hopefully
experienced people working together effectively.

 Process populism. We often run into organizations where leadership’s decision-
making process when it comes to software process boils down to “ask an industry
analyst firm what’s popular” or “what are my competitors adopting?” rather than
what is the best fit for our situation. Process populism is fed by false promises
and leadership’s hope to find a silver bullet to the very significant challenges that
they face around improving their organization’s processes. Most agile methods
and frameworks are prescriptive, regardless of their marketing claims—when
you’re given a handful of techniques out of the thousands that exist, and not given
explicit options for tailoring those techniques, that’s pretty much as prescriptive
as it gets. We appreciate that many people just want to be told what to do, but
unless that method/framework actually addresses the real problem that you face,
then adopting it likely isn’t going to do much to help the situation.

Luckily, there are several things that are the “winds in our sails” that propel you to read
this book:

 It embraces your uniqueness. This book recognizes that your team is unique
and faces a unique situation. No more false promises of a “one-size-fits-all”
process that requires significant, and risky, disruption to adopt.

 It embraces the complexity you face. This book effectively holds up a mirror
to the inherent complexities of solution delivery, and presents an accessible

 vii

representation to help guide your process improvement efforts. No more
simplistic, silver bullet methods or process frameworks that gloss over the myriad
of challenges your organizations faces, because to do so wouldn’t fit in well with
the certification training they’re hoping to sell you.

 It provides explicit choices. This book provides the tools you need to make
better process decisions that in turn will lead to better outcomes. In short, it
enables your team to own their own process, to choose their way of working
(WoW) that reflects the overall direction of your organization. This book presents
a proven strategy for guided continuous improvement (GCI), a team-based
process improvement strategy rather than naïve adoption of a “populist process.”

 It provides agnostic advice. This book isn’t limited to the advice of a single
framework or method, nor is it limited to agile and lean. Our philosophy is to look
for great ideas regardless of their source and to recognize that there are no best
practices (nor worst practices). When we learn a new technique, we strive to
understand what its strengths and weaknesses are and in what situations to (not)
apply it.

In our training, we often get comments like “I wish I knew this five years ago,” “I wish
my Scrum coaches knew this now,” or “Going into this workshop I thought I knew everything
about agile development, boy was I wrong.” We suspect you’re going to feel the exact same
way about this book.

How This Book Is Organized

This book is organized into six sections:
1. Disciplined Agile Delivery (DAD) in a Nutshell. This section works through

fundamental strategies to choose and evolve your way of working (WoW) and the
Disciplined Agile mindset, overviews DAD, describes typical roles and
responsibilities of people on DAD teams, describes a process goal/outcome-driven
approach that makes your process choices explicit, and shows how DAD supports
several life cycles that share a common governance strategy.

2. Successfully Initiating Your Team. This section is a reference lookup for agile,
lean, and sometimes traditional techniques for initiating a solution delivery
team/project in a streamlined manner. The trade-offs of each technique are
summarized so that your team can choose the most appropriate techniques that you
can handle given the situation that you face. Better decisions lead to better outcomes.

3. Producing Business Value. Similar to Section 2, this is also a reference lookup
describing a large collection of techniques available to you that are focused on
construction of a software-based product solution.

4. Releasing Into Production. You guessed it, this is a reference lookup for techniques
for successfully releasing your solution into production or the marketplace.

5. Sustaining and Enhancing Your Team. This section is a reference lookup for
techniques that are applicable throughout the entire life cycle, such as strategies to
support the personal growth of team members, strategies to coordinate both within
your team and with other teams, and strategies to evolve your WoW as you learn over
time.

6. Parting Thoughts and Back Matter. A few parting thoughts, an appendix
describing the rest of the DA tool kit, an appendix describing a respectable
certification strategy for DA practitioners, a list of abbreviations, references, and an
index.

 viii

How to Read This Book

Read the first section in its entirety as it describes the fundamental concepts of guided
continuous improvement (GCI) and the DAD portion of the Disciplined Agile (DA) tool kit.
Then use the rest of the book as a reference handbook to help inform your efforts in choosing
and evolving your WoW. Sections 2–5 overview hundreds of techniques, and more
importantly describe when you should consider using them, and thereby will prove to be an
invaluable reference for your improvement efforts.

Who This Book Is For

This book is for people who want to improve their team’s way of working (WoW). It’s for
people who are willing to think outside of the “agile box” and experiment with new WoWs
regardless of their agile purity. It’s for people who realize that context counts, that everyone
faces a unique situation and will work in their own unique way, and that one process does not
fit all. It’s for people who realize that, although they are in a unique situation, others have
faced similar situations before and have figured out a variety of strategies that you can adopt
and tailor—you can reuse the process learnings of others and thereby invest your energies
into adding critical business value to your organization.

Our aim in writing this book is to provide a comprehensive reference for Disciplined Agile
Delivery (DAD). It is a replacement for our first DAD book, Disciplined Agile Delivery: A
Practitioner’s Guide to Agile Software Delivery in the Enterprise, which was published in 2012. DAD
has evolved considerably since then so it’s time for an update. Here it is.

Acknowledgments

We would like to thank Beverley Ambler, Joshua Barnes, Klaus Boedker, Kiron Bondale, Tom
Boulet, Paul Carvalho, Chris Celsie, Daniel Gagnon, Drennan Govender, Bjorn Gustafsson,
Michelle Harrison, Michael Kogan, Katherine Lines, Louise Lines, Glen Little, Valentin Tudor
Mocanu, Maciej Mordaka, Charlie Mott, Jerry Nicholas, Edson Portilho, Simon Powers, Aldo
Rall, Frank Schophuizen, Al Shalloway, David Shapiro, Paul Sims, Jonathan Smart, Roly
Stimson, Klaas van Gend, Abhishek Vernal, and Jaco Viljoen for all of their input and hard
work that they invested to help us write this book. We couldn’t have done it without you.

CONTENTS

FOREWORD ... III
PREFACE .. V

SECTION 1: DISCIPLINED AGILE DELIVERY IN A NUTSHELL 1
1 CHOOSING YOUR WOW! ... 3
2 BEING DISCIPLINED ... 21
3 DISCIPLINED AGILE DELIVERY (DAD) IN A NUTSHELL .. 45
4 ROLES, RIGHTS, AND RESPONSIBILITIES ... 57
5 PROCESS GOALS ... 71
6 CHOOSING THE RIGHT LIFE CYCLE ... 81

SECTION 2: SUCCESSFULLY INITIATING YOUR TEAM .. 109
7 FORM TEAM ... 110
8 ALIGN WITH ENTERPRISE DIRECTION ... 127
9 EXPLORE SCOPE .. 135
10 IDENTIFY ARCHITECTURE STRATEGY ... 149
11 PLAN THE RELEASE ... 165
12 DEVELOP TEST STRATEGY ... 179
13 DEVELOP COMMON VISION .. 207
14 SECURE FUNDING ... 215

SECTION 3: PRODUCING BUSINESS VALUE... 221
15 PROVE ARCHITECTURE EARLY .. 223
16 ADDRESS CHANGING STAKEHOLDER NEEDS ... 227
17 PRODUCE A POTENTIALLY CONSUMABLE SOLUTION... 241
18 IMPROVE QUALITY ... 257
19 ACCELERATE VALUE DELIVERY ... 265

SECTION 4: RELEASING INTO PRODUCTION.. 289
20 ENSURE PRODUCTION READINESS .. 291
21 DEPLOY THE SOLUTION .. 295

SECTION 5: SUSTAINING AND ENHANCING YOUR TEAM 303
22 GROW TEAM MEMBERS .. 305
23 COORDINATE ACTIVITIES ... 315
24 EVOLVE WAY OF WORKING (WOW) ... 335
25 ADDRESS RISK .. 365
26 LEVERAGE AND ENHANCE EXISTING INFRASTRUCTURE ... 378
27 GOVERN DELIVERY TEAM... 386

SECTION 6: PARTING THOUGHTS AND BACK MATTER ... 406
28 DISCIPLINED SUCCESS ... 407

 x

APPENDIX – DISCIPLINED AGILE CERTIFICATION ...409
REFERENCES AND ADDITIONAL RESOURCES ..413
ACRONYMS AND ABBREVIATIONS ..417
INDEX ..421
ABOUT THE AUTHORS ..441

SECTION 1: DISCIPLINED AGILE DELIVERY (DAD) IN A

NUTSHELL

This section is organized into the following chapters:

 Chapter 1: Choosing Your WoW! Overview of how to apply this book.

 Chapter 2: Being Disciplined. Values, principles, and philosophies for disciplined
agilists.

 Chapter 3: Disciplined Agile Delivery in a Nutshell. An overview of DAD.

 Chapter 4: Roles, Rights, and Responsibilities. Individuals and interactions.

 Chapter 5: The Process Goals. How to focus on process outcomes rather than conform
to process prescriptions.

 Chapter 6: Choosing the Right Life Cycle. How teams can work in unique ways, yet
still be governed consistently.

3

1 CHOOSING YOUR WOW!

A man’s pride can be his downfall, and he needs to learn when to turn
to others for support and guidance. —Bear Grylls

Welcome to Choose Your WoW!, the book
about how agile software development
teams, or more accurately agile/lean solution
delivery teams, can choose their way of
working (WoW). This chapter describes
some fundamental concepts around why
choosing your WoW is important,
fundamental strategies for how to do so, and
how this book can help you to become
effective at it.

Why Should Teams Choose Their

WoW?

Agile teams are commonly told to own their
process, to choose their WoW. This is very
good advice for several reasons:

 Context counts. People and teams will
work differently depending on the
context of their situation. Every person
is unique, every team is unique, and
every team finds itself in a unique
situation. A team of five people will
work differently than a team of 20, than
a team of 50. A team in a life-critical
regulatory situation will work differently
than a team in a nonregulatory situation.
Our team will work differently than your team because we’re different people with our
own unique skill sets, preferences, and backgrounds.

 Choice is good. To be effective, a team must be able to choose the practices and
strategies to address the situation that they face. The implication is that they need to know
what these choices are, what the trade-offs are of each, and when (not) to apply each one.
In other words, they either need to have a deep background in software process,
something that few people have, or have a good guide to help them make these process-
related choices. Luckily, this book is a very good guide.

 We should optimize flow. We want to be effective in the way that we work, and ideally
to delight our customers/stakeholders in doing so. To do this, we need to optimize the
workflow within our team and in how we collaborate with other teams across the
organization.

 We want to be awesome. Who wouldn’t want to be awesome at what they do? Who
wouldn’t want to work on an awesome team or for an awesome organization? A
significant part of being awesome is to enable teams to choose their WoW and to allow
them to constantly experiment to identify even better ways they can work.

Key Points in This Chapter

 Disciplined Agile Delivery (DAD)
teams have the autonomy to choose
their way of working (WoW).

 You need to both “be agile” and know
how to “do agile.”

 Software development is complicated;
there’s no easy answer for how to do
it.

 Disciplined Agile (DA) provides the
scaffolding—a tool kit of agnostic
advice—to choose your WoW.

 Other people have faced, and
overcome, similar challenges to yours.
DA enables you to leverage their
learnings.

 You can use this book to guide how to
initially choose your WoW and then
evolve it over time.

 The real goal is to effectively achieve
desired organizational outcomes, not
to be/do agile.

 Better decisions lead to better
outcomes.

 4

In short, we believe that it’s time to take back agile. Martin Fowler recently coined the term
“agile industrial complex” to refer to the observation that many teams are following a “faux
agile” strategy, sometimes called “agile in name only” (AINO). This is often the result of
organizations adopting a prescriptive framework, such as SAFe, and then forcing teams to
adopt it regardless of whether it actually makes sense to do so (and it rarely does). Or forcing
teams to follow an organizational standard application of Scrum. Yet canonical agile is very
clear; it’s individuals and interactions over processes and tools—teams should be allowed, and
better yet, supported, to choose and then evolve their WoW.

You Need to “Be Agile” and Know How to “Do Agile”

Scott’s daughter, Olivia, is 10 years old. She and her friends are some of the most agile people
we’ve ever met. They’re respectful (as much as 10-year-old children can be), they’re open-
minded, they’re collaborative, they’re eager to learn, and they’re always experimenting. They
clearly embrace an agile mindset, yet if we were to ask them to develop software it would be
a disaster. Why? Because they don’t have the skills. They could gain these skills in time, but
right now they just don’t know what they’re doing when it comes to software development.
We’ve also seen teams made up of millennials who collaborate very naturally and have the
skills to develop solutions, although perhaps are not yet sufficiently experienced to understand
the enterprise-class implications of their work. And, of course, we’ve seen teams of developers
with decades of IT experience but very little experience doing so collaboratively. None of
these situations are ideal. Our point is that it’s absolutely critical to have an agile mindset, to
“be agile,” but you also need to have the requisite skills to “do agile” and the experience to
“do enterprise agile.” An important aspect of this book is that it comprehensively addresses
the potential skills required by agile/lean teams to succeed.

The real goal is to effectively achieve desired organizational outcomes, not to be/do agile.
What good is it to be working in an agile manner if you’re producing the wrong thing, or
producing something you already have, or are producing something that doesn’t fit into the
overall direction of your organization? Our real focus must be on achieving the outcomes that
will make our organization successful, and becoming more effective in our WoW will help us
to do that.

Accept That There’s No Easy Answer

Software development, or more accurately solution delivery, is complex. You need to be able
to initiate a team, produce a solution that meets the needs of your stakeholders, and then
successfully release it to them. You need to know how to explore their needs, architect and
design a solution, develop that solution, validate it, and deploy it. This must be done within
the context of your organization, using a collection of technologies that are evolving, and for
a wide variety of business needs. And you’re doing this with teams of people with different
backgrounds, different preferences, different experiences, different career goals, and they may
report to a different group or even a different organization than you do.

We believe in embracing this complexity because it’s the only way to be effective, and
better yet, to be awesome. When we ignore important aspects of our WoW, say architecture
for example, we tend to make painful mistakes in that area. When we denigrate aspects of our
WoW, such as governance, perhaps because we’ve had bad experiences in the past with not-
so-agile governance, then we risk people outside of our team taking responsibility for that
aspect and inflicting their non-agile practices upon us. In this way, rather than enabling our
agility, they act as impediments.

 5

We Can Benefit From the Learnings of Others

A common mistake that teams make is that they believe that just because they face a unique
situation that they need to figure out their WoW from scratch. Nothing could be further from
the truth. When you develop a new application, do you develop a new language, a new
compiler, new code libraries, and so on, from scratch? Of course not, you adopt the existing
things that are out there, combine them in a unique way, and then modify them as needed.
Development teams, regardless of technology, utilize proven frameworks and libraries to
improve productivity and quality. It should be the same thing with process. As you can see in
this book, there are hundreds, if not thousands, of practices and strategies out there that have
been proven in practice by thousands of teams before you. You don’t need to start from
scratch, but instead can develop your WoW by combining existing practices and strategies and
then modifying them appropriately to address the situation at hand. DA provides the tool kit
to guide you through this in a streamlined and accessible manner. Since our first book on
DAD [AmblerLines2012], we have received feedback that while it is seen as an extremely rich
collection of strategies and practices, practitioners sometimes struggle to understand how to
reference the strategies and apply them. One of the goals of this book is to make DAD more
accessible so that you can easily find what you need to customize your WoW.

One thing that you’ll notice throughout the book is that we provide a lot of references.
We do this for three reasons: First, to give credit where credit is due. Second, to let you know
where you can go for further details. Third, to enable us to focus on summarizing the various
techniques and to put them into context, rather than going into the details of every single one.
The goal is to make you aware of what techniques are available, and the trade-offs of each
based on context. You can then find other detailed information on how to apply a technique
elsewhere. For example, we will identify and compare test-driven development (TDD) to test-
after development as potential techniques to experiment with, and then you can do further
research into your chosen option. Here is our approach to references:

 [W]. This indicates that there is a Wikipedia page for the concept at wikipedia.org.
Wikipedia is an online, open-content, collaborative encyclopedia that allows anyone
to alter its content. With the absence of peer review and validation of content, PMI
cannot ensure that the information available is complete, accurate, reliable, or
corresponds with the current state of knowledge in the relevant fields. Having said
that, many of these pages could use some work. Wikipedia pages cited in this book
can be located in the Additional Resources section at the end of this book. Our hope
is that readers such as yourself will step up and help to evolve these pages so as to
share our expertise with the rest of the world.

 [MeaningfulName]. There is a corresponding entry in the references at the back of
the book. This is an indication that either we couldn’t find an appropriate Wikipedia
page or that we had a detailed source on the subject already. Either way, we’d really
like to see Wikipedia pages developed for these topics, so please consider starting one
if you’re knowledgeable about that topic. Also feel free to reach out to us as we’d be
happy to donate appropriate material to help seed the effort.

 [W, MeaningfulNames]. This indicates Wikipedia has a good page, plus there are a
few more resources that we recommend. Please consider updating the Wikipedia page
though.

 No reference. When a technique is a practice, such as TDD, we can often find a
solid reference for it. When the technique is a strategy, such as testless programming,

https://wikipedia.org/

 6

then it’s difficult to find a reference for it. So please consider writing a blog about
that strategy that we could refer to in the future.

DA Knowledge Makes You a Far More Valuable Team Member

We have heard from many DA organizations—and they permit us to quote them—that
team members who have invested in learning DA (and proving it through challenging

certifications) become more
valuable contributors. The reason to
us is quite clear. Understanding a
larger library of proven strategies
means that teams will make better
decisions and “fail fast” less, and
rather “learn and succeed earlier.” A
lack of collective self-awareness of
the available options is a common
source of teams struggling to meet
their agility expectations—and that
is exactly what happens when you
adopt prescriptive
methods/frameworks that don’t
provide you with choices. Every
team member, especially
consultants, are expected to bring a
tool kit of ideas to customize the
team’s process as part of self-
organization. A larger tool kit and
commonly understood terminology
is a good thing.

The Disciplined Agile (DA) Tool Kit Provides Accessible Guidance

One thing that we have learned over time is that some people, while they understand the
concepts of DA by either reading the books or attending a workshop, struggle with how to
actually apply DA. DA is an extremely rich body of knowledge that is presented in an
accessible manner.

The good news is that the content of this book is organized by the goals, and that by using
the goal-driven approach, it is easy to find the guidance that you need for the situation at hand.
Here’s how you can apply this tool kit in your daily work to be more effective in achieving
your desired outcomes:

 Contextualized process reference

 Guided continuous improvement (GCI)

 Process-tailoring workshops

 Enhanced retrospectives

 Enhanced coaching

 7

Contextualized Process Reference

As we described earlier, this book is meant to be a reference. You will find it handy to keep
this book nearby to quickly reference available strategies when you face particular challenges.
This book presents you with process choices and more importantly puts those choices into
context. DA provides three levels of scaffolding to do this:

1. Life cycles. At the highest level of WoW guidance are life cycles, the closest that
DAD gets to methodology. DAD supports six different life cycles, as you can see in
Figure 1.1, to provide teams with the flexibility of choosing an approach that makes
the most sense for them. Chapter 6 explores the life cycles, and how to choose
between them, in greater detail. It also describes how teams can still be governed
consistently even though they’re working in different ways.

2. Process goals. Figure 1.2
presents the goal diagram for
the Improve Quality process
goal, which is described in
detail in Chapter 18, and
Figure 1.3 overviews the
notation of goal diagrams.
DAD is described as a
collection of 21 process
goals, or process outcomes,
if you like. Each goal is
described as a collection of
decision points, issues that
your team needs to
determine whether they
need to address, and if so,
how they will do so.
Potential
practices/strategies for
addressing a decision point,
which can be combined in
many cases, are presented as
lists. Goal diagrams are
similar conceptually to mind maps, albeit with the extension of the arrow to represent
relative effectiveness of options in some cases. Goal diagrams are, in effect,
straightforward guides to help a team to choose the best strategies that they are
capable of doing right now given their skills, culture, and situation. Chapter 5 explores
the goal-driven approach in greater detail.

3. Practices/strategies. At the most granular level of WoW guidance are practices and
strategies, depicted on goal diagrams in the lists on the right-hand side. Sections 2–4
of this book explore each process goal in detail, one per chapter. Each of these
chapters overviews the process goal and key concepts behind the goal, describes each
decision point for the goal, and then overviews each practice/strategy and the trade-
offs associated with them in an agnostic manner.

 8

Figure 1.1: The DAD life cycles.

Figure 1.2: The Improve Quality process goal.

An important implication of goal diagrams, such as the one in Figure 1.2, is that you need
less process expertise to identify potential practices/strategies to try out. What you do need is
an understanding of the fundamentals of DAD, the focus of Section 1 of this book, and
familiarity with the goal diagrams so that you can quickly locate potential options. You do not

 9

need to memorize all of your available options because you can look them up, and you don’t
need to have deep knowledge of each option because they’re overviewed and put into context
in the individual goal chapters. Rather, you can use this book to refer to DA when you need
guidance to solve particular challenges that you face.

Figure 1.3: Goal diagram notation.

Improvement Occurs at Many Levels

Process improvement, or WoW evolution, occurs across your organization. Organizations are
a collection of interacting teams and groups, each of which evolves continuously. As teams
evolve their WoWs, they motivate changes in the teams they interact with. Because of this
constant process evolution, hopefully for the better, and because people are unique, it
becomes unpredictable how people are going to work together or what the results of that
work will be. In short, your organization is a complex adaptive system (CAS) [W]. This
concept is overviewed in Figure 1.4, which depicts teams, organization areas (such as divisions,
lines of business, or value streams), and enterprise teams. Figure 1.4 is a simplification—there
are far more interactions between teams and across organizational boundaries, and in large
enterprises, an organizational area may have its own “enterprise” groups, such as enterprise
architecture or finance—the diagram is complicated enough as it is. There are several
interesting implications for choosing your WoW:
1. Every team will have a different WoW. We really can’t say this enough.
2. We will evolve our WoW to reflect learnings whenever we work with other teams.

Not only do we accomplish whatever outcome we set to achieve by working with another
team, we very often learn new techniques from them or new ways of collaborating with
them (that they may have picked up from working with other teams).

3. We can purposefully choose to learn from other teams. There are many strategies that
we can choose to adopt within our organization to share learnings across teams, including
practitioner presentations, communities of practice (CoPs)/guilds, coaching, and many
others. Team-level strategies are captured in the Evolve WoW process goal (Chapter 24)
and organizational-level strategies in the Continuous Improvement process blade1
[AmblerLines2017]. In short, the DA tool kit is a generative resource that you can apply
in agnostically choosing your WoW.

1 A process blade addresses a cohesive process area—such as reuse engineering, finance, or procurement—in other layers of
Disciplined Agile.

 10

4. We can benefit from organizational transformation/improvement efforts.
Improvement can, and should, happen at the team level. It can also happen at the
organizational-area level (e.g., we can work to optimize flow between the teams within an
area). Improvement also needs to occur outside of DAD teams (e.g., we can help the
enterprise architecture, finance, and people management groups to collaborate with the
rest of the organization more effectively).

Figure 1.4: Your organization is a complex adaptive system (CAS).

As Figure 1.5 depicts, the Disciplined Agile (DA) tool kit is organized into four levels:
1. Foundation. The foundation layer provides the conceptual underpinnings of the

DA tool kit.
2. Disciplined DevOps. DevOps is the streamlining of solution development and

operations, and Disciplined DevOps is an enterprise-class approach to DevOps.
This layer includes Disciplined Agile Delivery (DAD), the focus of this book, plus
other enterprise aspects of DevOps.

3. Value Stream. The value stream layer is based on Al Shalloway’s FLEX. It’s not
enough to be innovative in ideas if these ideas can’t be realized in the marketplace
or in the company. FLEX is the glue that ties an organization’s strategies in that
it visualizes what an effective value stream looks like, enabling you to make
decisions for improving each part of the organization within the context of the
whole.

4. Disciplined Agile Enterprise (DAE). The DAE layer focuses on the rest of the
enterprise activities that support your organization’s value streams.

Teams, regardless of what level they operate at, can and should choose their WoW. Our
focus in this book is on DAD teams, although at times we will delve into cross-team and
organizational issues where appropriate.

 11

Figure 1.5: The scope of Disciplined Agile.

Guided Continuous Improvement (GCI)

Many teams start their agile journey by adopting agile methods such as Scrum [W], Extreme
Programming (XP) [W], or Dynamic Systems Development Method (DSDM)-Atern [W].
Large teams dealing with “scale” (we’ll discuss what scaling really means in Chapter 2) may
choose to adopt SAFe® [W], LeSS [W], or Nexus® [Nexus] to name a few. These
methods/frameworks each address a specific class of problem(s) that agile teams face, and
from our point of view, they’re rather prescriptive in that they don’t provide you with many
choices. Sometimes, particularly when frameworks are applied to contexts where they aren’t
an ideal fit, teams often find that they need to invest significant time “descaling” them to
remove techniques that don’t apply to their situation, then add back in other techniques that
do. Having said that, when frameworks are applied in the appropriate context, they can work
quite well in practice. When you successfully adopt one of these prescriptive
methods/frameworks, your team productivity tends to follow the curve shown in Figure 1.6.
At first, there is a drop in productivity because the team is learning a new way of working, it’s
investing time in training, and people are often learning new techniques. In time, productivity
rises, going above what it originally was, but eventually plateaus as the team falls into its new
WoW. Things have gotten better, but without concerted effort to improve, you discover that
team productivity plateaus.

 12

Figure 1.6: Team productivity when adopting a prescriptive method or framework.

Some of the feedback that we get about Figure 1.6 is that this can’t be, that Scrum promises

that you can do twice the work in half the time [Sutherland]. Sadly, this claim of four times
productivity improvement doesn’t seem to hold water in practice. A recent study covering 155
organizations, 1,500 waterfall, and 1,500 agile teams found actual productivity increases of
agile teams, mostly following Scrum, to be closer to 7–12 % [Reifer]. At scale, where the
majority of organizations have adopted SAFe, the improvement goes down to 3–5 %.

There are many ways that a team can adopt to help them improve their WoW, strategies
that are captured by the Evolve WoW process goal described in Chapter 24. Many people
recommend an experimental approach to improvement, and we’ve found guided experiments
to be even more effective. The agile community provides a lots of advice around
retrospectives, a working session where a team reflects on how they get better, and the lean
community gives great advice for how to act on the reflections [Kerth]. Figure 1.7 summarizes
W. Edward Deming’s plan-do-study-act (PDSA) improvement loop [W], sometimes called a
kaizen loop. This was Deming’s first approach to continuous improvement, which he later
evolved to plan do check act (PDCA), which became popular within the business community
in the 1990s and the agile community in the early 2000s. But what many people don’t realize
is that after experimenting with PDCA for several years, Deming realized that it wasn’t as
effective as PDSA and went back to it. The primary difference being that the “study” activity
motivated people to measure and think more deeply about whether a change worked well for
them in practice. So we’ve decided to respect Deming’s wishes and recommend PDSA rather
than PDCA, as we found critical thinking such as this results in improvements that stick. Some
people gravitate toward U.S. Air Force Colonel John Boyd’s OODA (Observe Orient Decide
Act) loop to guide their continuous improvement efforts—as always, our advice is to do what
works for you [W]. Regardless of which improvement loop you adopt, remember that your
team can, and perhaps should, run multiple experiments in parallel, particularly when the
potential improvements are on different areas of your process and therefore won’t affect each
other (if they effect each other, it makes it difficult to determine the effectiveness of each
experiment).

 13

Figure 1.7: The PDSA continuous improvement loop.

The basic idea with the PDSA/PDCA/OODA continuous improvement loop strategy is
that you improve your WoW as a series of small changes, a strategy the lean community calls
kaizen, which is Japanese for improvement. In Figure 1.9, you see the workflow for running an
experiment. The first step is to identify a potential improvement, such as a new practice or
strategy, that you want to experiment with to see how well it works for you in the context of
your situation. The effectiveness of a potential improvement is determined by measuring against
clear outcomes, perhaps identified via a goal question metric (GQM) or an objectives and key
results (OKRs) strategy as described in Chapter 27. Measuring the effectiveness of applying the
new WoW is called validated learning [W]. It’s important to note that Figure 1.8 provides a
detailed description of a single pass through a team’s continuous improvement loop.

The value of DA is that it can guide you through this identification step by helping you to
agnostically identify a new practice/strategy that is likely to address the challenge you’re
hoping to address. By doing so, you increase your chance of identifying a potential
improvement that works for you, thereby speeding up your efforts to improve your WoW—
we call this guided continuous improvement (GCI). In short, at this level, the DA tool kit
enables you to become a high-performing team quicker. In the original DAD book, we
described a strategy called “measured improvement” that worked in a very similar manner.

 14

Figure 1.8: An experimental approach to evolve our WoW.

A similar strategy that we’ve found very effective in practice is Lean Change2 [LeanChange1,
LeanChange2], particularly at the organizational level. The Lean Change management cycle,
overviewed in Figure 1.9, applies ideas from Lean Startup [Ries] in that you have insights
(hypothesis), identify potential options to address your insights, and then run experiments in the
form of minimum viable changes (MVCs). These MVCs are introduced, allowed to run for a
while, and then the results are measured to determine how effective they are in practice. Teams
then can choose to stick with the changes that work well for them in the situation that they face,
and abandon changes that don’t work well. Where GGI enables teams to become high
performing, Lean Change enables high-performing organizations.

Figure 1.9: The Lean Change management cycle.

2 In Chapter 7 of An Executive’s Guide to Disciplined Agile, we show how to apply Lean Change at the organizational level.

 15

The improvement curve for (unguided) continuous improvement strategies is shown in Figure
1.10 as a dashed line. You can see that there is still a bit of a productivity dip at first as teams
learn how to identify MVCs and then run the experiments, but this is small and short lived.
The full line depicts the curve for GCI in context; teams are more likely to identify options
that will work for them, resulting in a higher rate of positive experiments and thereby a faster
rate of improvement. In short, better decisions lead to better outcomes.

Figure 1.10: Guided continuous improvement (GCI) enables teams to improve faster.

Of course, neither of the lines in Figure 1.10 are perfectly smooth. A team will have ups
and downs, with some failed experiments (downs) where they learn what doesn’t work in their
situation and some successful experiences (ups) where they discover a technique that improves
their effectiveness as a team. The full line, representing GCI, will be smoother than the dashed

line because teams will have a higher
percentage of ups.
The good news is that these two
strategies, adopting a prescriptive
method/framework and then
improving your WoW through GCI,
can be combined, as shown in Figure
1.11. We are constantly running into
teams that have adopted a
prescriptive agile method, very often
Scrum or SAFe, that have plateaued
because they’ve run into one or
more issues not directly addressed
by their chosen framework/method.
Because the method doesn’t address
the problem(s) they face, and
because they don’t have expertise in
that area, they tend to flounder. Ivar
Jacobson has coined the term
“they’re stuck in method prison”
[Prison]. By applying a continuous
improvement strategy, or better yet,

 16

GCI, their process improvement efforts soon get back on track. Furthermore, because the
underlying business situation that you face is constantly shifting, it tells you that you cannot
sit on your “process laurels,” but instead must adjust your WoW to reflect the evolving
situation.

 Figure 1.11: Evolving away from a prescriptive agile method.

To be clear, GCI at the team level tends to be a simplified version of what you would do
at the organizational level. At the team level, teams may choose to maintain an improvement
backlog of things they hope to improve. At the organizational area or enterprise levels, we
may have a group of people guiding a large transformation or improvement effort that is
focused on enabling teams to choose their WoWs and to address larger, organizational issues
that teams cannot easily address on their own.

Process-Tailoring Workshops
Another common strategy to apply DA to choose your WoW is a process-tailoring workshop
[Tailoring]. In a process-tailoring workshop, a coach or team lead walks the team through
important aspects of DAD and the team discusses how they’re going to work together. This
typically includes choosing a life cycle, walking through the process goals one at a time and
addressing the decision points of each one, and discussing roles and responsibilities.

A process-tailoring workshop, or several short workshops, can be run at any time. As
shown in Figure 1.12, they are typically performed when a team is initially formed to determine
how they will streamline their initiation efforts (what we call Inception, described in detail in
Section 2), and just before Construction begins to agree on how that effort will be approached.
Any process decisions made in process-tailoring workshops are not carved in stone but instead
evolve over time as the team learns. You always want to be learning and improving your
process as you go, and in fact, most agile teams will regularly reflect on how to do so via
holding retrospectives. In short, the purpose of process-tailoring workshops is to get your

team going in the right direction, whereas the purpose of retrospectives is to identify potential
adjustments to that process.

 17

Figure 1.12: Choosing and evolving your WoW over time.

A valid question to ask is what does the timeline look like for evolving the WoW within a

team? Jonathan Smart, who guided the transformation at Barclays, recommends Dan North’s
visualize, stabilize, and optimize timeline as depicted in Figure 1.13. You start by visualizing
your existing WoW and then identifying a new potential WoW that the team believes will work

Process-Tailoring Workshops in a Large Financial Institution
By Daniel Gagnon

In my experience in running dozens of process-tailoring workshops over several years,
with teams of every shape, size, and experience level and in different organizations
[Gagnon], interestingly, the most recurring comment is that the workshops “revealed all
kinds of options we didn’t even realize were options!” Although almost always a bit of a
hard sell at the outset, I have yet to work with a team that is unable to quickly grasp and
appreciate the value of these activities.
Here are my lessons learned:

1. A team lead, architecture owner, or senior developer can actually stand in for
most of the developers in the early stages.

2. Tools help. We developed a simple spreadsheet to capture WoW choices.
3. Teams can make immediate WoW decisions and identify future, more “mature”

aspirational choices that they set as improvement goals.
4. We defined a small handful of enterprise-level choices to promote consistency

across teams, including some “infrastructure as code” choices.
5. Teams don’t have to start from a blank slate, but instead can start with the choices

made by a similar team and then tailor it from there.
Here’s an important note on determining participation: Ultimately, the teams

themselves are the best arbiters of who should attend the sessions at varying stages of
advancement. The support will become easier and easier to obtain as the benefits of
allowing teams to choose their WoW become apparent.

Daniel Gagnon has coached the adoption of Disciplined Agile in two large Canadian
financial institutions and is now a senior agile coach with Levio in Quebec.

 18

for them (this is what the initial tailoring is all about). Then the team needs to apply that new
WoW and learn how to make it work in their context. This stabilization phase could take
several weeks or months, and once the team has stabilized its WoW then it is in a position to
evolve it via a GCI strategy.

Figure 1.13: A timeline for process tailoring and improvement on a team.

The good news is that with effective facilitation, you can keep process-tailoring workshops

streamlined. To do this, we suggest that you:

 Schedule several short sessions (you may not need all of them).

 Have a clear agenda (set expectations).

 Invite the entire team (it’s their process).

 Have an experienced facilitator (this can get contentious).

 Arrange a flexible work space (this enables collaboration).
A process-tailoring workshop is likely to address several important aspects surrounding

our way of working (WoW):

 Determine the rights and responsibilities of team members, which is discussed in
detail in Chapter 4.

 How do we intend to organize/structure the team?

 What life cycle will the team follow? See Chapter 6 for more on this.

 What practices/strategies will we follow?

 Do we have a definition of ready (DoR) [Rubin], and if so what is it?

 Do we have a definition of done (DoD) [Rubin], and if so what is it?

 What tools will we use?
Process-tailoring workshops require an investment in time, but they’re an effective way to

ensure that team members are well aligned in how they intend to work together. Having said
that, you want to keep these workshops as streamlined as possible as they can easily take on a
life of their own—the aim is to get going in the right “process direction.” You can always
evolve your WoW later as you learn what works and what doesn’t work for you. Finally, you
still need to involve some people who are experienced with agile delivery. DA provides a
straightforward tool kit for choosing and evolving your WoW, but you still need the skills and
knowledge to apply this tool kit effectively.

While DA provides a library or tool kit of great ideas, in your organization you may wish
to apply some limits to the degree of self-organization your teams can apply. In DAD, we
recommend self-organization within appropriate governance. As such, what we have seen
with organizations that adopt DA is that they sometimes help steer the choices so that teams
self-organize within commonly understood organizational “guard rails.”

Enhance Retrospectives Through Guided Improvement Options

A retrospective is a technique that teams use to reflect on how effective they are and hopefully
to identify potential process improvements to experiment with [W, Kerth]. As you would

 19

guess, DA can be used to help identify improvements that would have a good chance of
working for you. As an example, perhaps you are having a discussion regarding excessive
requirements churn due to ambiguous user stories and acceptance criteria. The observation
may be that you need additional requirements models to clarify the requirements. But which
models to choose? Referring to the Explore Scope process goal, described in Chapter 9, you
could choose to create a domain diagram to clarify the relationships between entities, or
perhaps a low-fidelity user interface (UI) prototype to clarify user experience (UX). We have
observed that by using DA as a reference, teams are exposed to strategies and practices that
they hadn’t even heard of before.

Enhance Coaching by Extending the Coach’s Process Tool Kit

DA is particularly valuable for agile coaches. First of all, an understanding of DA means that
you have a larger tool kit of strategies that you can bring to bear to help solve your team’s
problems. Second, we often see coaches refer to DA to explain that some of the things that
the teams or the organization itself sees as “best practices” are actually very poor choices, and
that there are better alternatives to consider. Third, coaches use DA to help fill in the gaps in
their own experience and knowledge.

Documenting Your WoW

Sigh, we wish we could say that you don’t need to document your WoW. But the reality is that
you very often do, and for one or more very good reasons:

1. Regulatory. Your team works in a regulatory environment where by law you need to
capture your process—your WoW—somehow.

2. It’s too complicated to remember. There are a lot of moving parts in your WoW.
Consider the goal diagram of Figure 1.2. Your team will choose to adopt several of
the strategies called out in it, and that’s only one of 21 goals. As we said earlier,
solution delivery is complex. We’ve done our best in DA to reduce this complexity
so as to help you to choose your WoW, but we can’t remove it completely.

3. It provides comfort. Many people are uncomfortable with the idea of not having a
“defined process” to follow, particularly when they are new to that process. They like
to have something to refer to from time to time to aid their learning. As they become
more experienced in the team’s WoW, they will refer to the documentation less until
finally they never use it at all.

Because few people like to read process material, we suggest you keep it as straightforward
as possible. Follow agile documentation [AgileDocumentation] practices, such as keeping it
concise and working closely with the audience (in this case, the team itself) to ensure it meets
their actual needs. Here are some options for capturing your WoW:

 Use a simple spreadsheet to capture goal diagram choices [Resources].

 Create an A3 (single sheet) overview of the process.

 Put up posters on the wall.

 Capture the process concisely in a wiki.
 As we show in the Evolve WoW process goal (Chapter 24), there are several strategies

that you can choose from to capture your WoW. A common approach is for a team to develop
and commit to a working agreement. Working agreements will describe the roles and
responsibilities that people will take on the team, the general rights and responsibilities of
team members, and very often the team’s process (their WoW). As shown in Figure 1.14, we
like to distinguish between two important aspects of a team working agreement—the internal
portion of it that describes how the team will work together and the external portion of it that

 20

describes how others should interact with the team. The external portion of a team’s working
agreement in some ways is a service-level agreement (SLA), or application programming
interface (API), for the team. It may include a schedule of common meetings that others may
attend (for example, daily coordination meetings and upcoming demos), an indication of how
to access the team’s automated dashboard, how to contact the team, and what the purpose of
the team is. The team’s working agreement, both the internal and external aspects of it, will,
of course, be affected by the organization environment and culture in which it operates.

Figure 1.14: Team working agreements.

In Summary

We’ve worked through several critical concepts in this chapter:

 Disciplined Agile Delivery (DAD) teams choose their way of working (WoW).

 You need to both “be agile” and know how to “do agile.”

 Solution delivery is complicated; there’s no easy answer for how to do it.

 Disciplined Agile (DA) provides the agnostic scaffolding to support a team in
choosing their WoW to deliver software-based solutions.

 Other people have faced, and overcome, similar challenges to yours. DA enables you
to leverage their learnings.

 You can use this book to guide how to initially choose your WoW and then evolve it
over time.

 A guided continuous improvement (GCI) approach will help your teams to break out
of “method prison” and thereby improve their effectiveness.

 The real goal is to effectively achieve desired organizational outcomes, not to be/do
agile.

 Better decisions lead to better outcomes.

21

2 BEING DISCIPLINED

Better decisions lead to better outcomes.

What does it mean to be disciplined? To be disciplined is to do the things that we know are
good for us, things that usually require hard work and perseverance. It requires discipline to
regularly delight our customers. It takes discipline for teams to become awesome. It requires

discipline for leaders to ensure that their people
have a safe environment to work in. It takes
discipline to recognize that we need to tailor our
way of working (WoW) for the context that we
face, and to evolve our WoW as the situation
evolves. It takes discipline to recognize that we
are part of a larger organization, that we should
do what’s best for the enterprise and not just
what’s convenient for us. It requires discipline to
evolve and optimize our overall workflow, and it
requires discipline to realize that we have many
choices regarding how we work and organize
ourselves, so we should choose accordingly.

The Manifesto for Agile Software Development

In 2001 the publication of the Manifesto for Agile Software Development [Manifesto], or Agile
Manifesto for short, started the agile movement. The manifesto captures four values
supported by 12 principles, which are listed below. It was created by a group of 17 people
with deep experience in software development. Their goal was to describe what they had
found to work in practice rather than describe what they hoped would work in theory.
Although it sounds like an obvious thing to do now, back then this was arguably a radical
departure from the approach taken by many thought leaders in the software engineering
community.

The Manifesto for Agile Software Development:

We are uncovering better ways of developing software by doing it and helping others
do it. Through this work, we have come to value:

1. Individuals and interactions over processes and tools
2. Working software over comprehensive documentation
3. Customer collaboration over contract negotiation
4. Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

There are 12 principles behind the Agile Manifesto that provide further guidance to
practitioners. These principles are:

1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

Key Points in This Chapter

 The Agile Manifesto is a great
starting point, but it isn’t
sufficient.

 Lean principles are critical to
success for agile solution delivery
teams in the enterprise.

 The DA mindset is based on
seven principles, seven promises,
and eight guidelines.

 There are several “hashtag
rebellions” that we can learn from.

 22

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the
project.

5. Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within
a development team is face-to-face conversation.

7. Working software is the primary measure of progress.
8. Agile processes promote sustainable development. The sponsors, developers,

and users should be able to maintain a constant pace indefinitely.
9. Continuous attention to technical excellence and good design enhances agility.
10. Simplicity—the art of maximizing the amount of work not done—is essential.
11. The best architectures, requirements, and designs emerge from self-organizing

teams.
12. At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly.

The publication of the Manifesto for Agile Software Development has proven to be a milestone for
the software development world and, as we’ve seen in recent years, for the business
community as well. But time has had its toll, and the manifesto is showing its age in several
ways:

1. It is limited to software development. The manifesto purposefully focused on
software development, not other aspects of IT and certainly not other aspects of our
overall enterprise. Many of the concepts can be modified to fit these environments,
and they have over the years. Thus, the manifesto provides valuable insights that we
can evolve and should be evolved and extended for a broader scope than was
originally intended.

2. The software development world has moved on. The manifesto was crafted to
reflect the environment in the 1990s, and some of the principles are out of date. For
instance, the third principle suggests that we should deliver software from every few
weeks to a couple of months. At the time, it was an accomplishment to have a
demonstrable increment of a solution even every month. In modern times, however,
the bar is significantly higher, with agile-proficient companies delivering functionality
many times a day in part because the manifesto helped us to get on a better path.

3. We’ve learned a lot since then. Long before agile, organizations were adopting lean
ways of thinking and working. Since 2001, agile and lean strategies have not only
thrived on their own but they’ve been successfully commingled. As we will soon see,
this commingling is an inherent aspect of the DA mindset. DevOps, the merging of
software development and IT operations life cycles, has clearly evolved as a result of
this commingling. There are few organizations that haven’t adopted, or are at least in
the process of adopting, DevOps ways of working—which Chapter 1 showed are an
integral part of the DA tool kit. Our point is that it’s about more than just agile.

Lean Software Development

The DA mindset is based on a combination of agile and lean thinking. An important starting
point for understanding lean thinking is The Lean Mindset by Mary and Tom Poppendieck. In
this book, they show how the seven principles of lean manufacturing can be applied to
optimize the entire value stream. There is great value in this, but we must also remember that

 23

most of us are not manufacturing cars—or anything else for that matter. There are several
types of work that lean applies to: manufacturing, services, physical-world product
development, and (virtual) software development, among others. While we like the
groundbreaking work of the Poppendieks, we prefer to look at the principles to see how they
can apply anywhere [Poppendieck]. These principles are:

1. Eliminate waste. Lean-thinking advocates regard any activity that does not directly
add value to the finished product as waste [WomackJones]. The three biggest sources
of waste in our work are the addition of unrequired features, project churn, and crossing
organizational boundaries (particularly between stakeholders and development teams).
To reduce waste, it is critical that teams be allowed to self-organize and operate in a
manner that reflects the work they’re trying to accomplish. In product development
work (the physical or virtual world), we spend considerable time discovering what is of
value. Doing this is not waste. We’ve seen many folks have endless debates on what
waste is because of this. We propose that a critical waste to eliminate is the waste of
time due to delays in workflow. On reflection, it can be verified that most waste is
reflected, even caused by, delays in workflow. We build unrequired features because we
build too-large batches and have delays in feedback as to whether they are needed (or
we’re not writing our acceptance tests, which delays understanding what we need).
Project churn (in particular, errors) is almost always due to getting out of sync without
realizing we are. Crossing organizational boundaries is almost always an action that
incurs delays as one part of the organization waits for the other.

2. Build quality in. Our process should not allow defects to occur in the first place,
but when this isn’t possible, we should work in such a way that we do a bit of work,
validate it, fix any issues that we find, and then iterate. Inspecting after the fact and
queuing up defects to be fixed at some time in the future isn’t as effective. Agile
practices that build quality into our process include test-driven development (TDD)
and nonsolo development practices, such as pair programming, mob programming,
and modeling with others (mob modeling). All of these techniques are described later
in this book.

3. Create knowledge. Planning is useful, but learning is essential. We want to promote
strategies, such as working iteratively, that help teams discover what stakeholders
really want and act on that knowledge. It’s also important for team members to
regularly reflect on what they’re doing and then act to improve their approach
through experimentation.

4. Defer commitment. It’s not necessary to start solution development by defining a
complete specification, and in fact that appears to be a questionable strategy at best. We
can support the business effectively through flexible architectures that are change tolerant
and by scheduling irreversible decisions for when we have more information and our
decisions will be better—the last possible moment. Frequently, deferring commitment
until the last responsible moment requires the ability to closely couple end-to-end
business scenarios to capabilities developed in multiple applications by multiple teams. In
fact, a strategy of deferring commitments to projects is a way of keeping our options open
[Denning]. Software offers some additional mechanisms for deferring commitment.
Through the use of emergent design, automated testing, and patterns thinking, essential
decisions can often be deferred with virtually no cost. In many ways, agile software
development is based on the concept that incremental delivery takes little extra
implementation time while enabling developers to save mountains of effort that would
otherwise be built on creating features that were not useful.

 24

5. Deliver quickly. It is possible to deliver high-quality solutions quickly. By limiting
the work of a team to within its capacity, we can establish a reliable and repeatable
flow of work. An effective organization doesn’t demand teams do more than they are
capable of, but instead asks them to self-organize and determine what outcomes they
can accomplish. Constraining teams to delivering potentially shippable solutions on
a regular basis motivates them to stay focused on continuously adding value.

6. Respect people. The Poppendiecks also observe that sustainable advantage is gained
from engaged, thinking people. The implication is that we need a lean approach to
governance (see Govern Delivery Team in Chapter 27) that focuses on motivating
and enabling teams—not on controlling them.

7. Optimize the whole. If we want to be effective at a solution, we must look at the
bigger picture. We need to understand the high-level business processes that a value
stream supports—processes that often cross multiple systems and multiple teams.
We need to manage programs of interrelated efforts, so we can deliver a complete
product/service to our stakeholders. Measurements should address how well we’re
delivering business value, and the team should be focused on delivering valuable
outcomes to its stakeholders.

The Disciplined Agile Mindset

The Disciplined Agile mindset is summarized in Figure 2.1 and is described as a collection of
principles, promises, and guidelines. We like to say that we believe in these seven principles,
so we promise to one another that we will work in a disciplined manner and follow a collection
of guidelines that enable us to be effective.

Figure 2.1: The Disciplined Agile mindset.

We Believe in These Principles

Let’s begin with the seven principles behind the Disciplined Agile (DA) tool kit. These ideas
aren’t new; there is a plethora of sources from which these ideas have emerged, including
Alistair Cockburn’s work around Heart of Agile [CockburnHeart], Joshua Kerievsky’s Modern
Agile [Kerievsky], and, of course, the Agile Manifesto for Software Development described earlier.

 25

In fact, the DA tool kit has always been a hybrid of great strategies from the very beginning,
with the focus being on how all of these strategies fit together in practice. While we have a
strong belief in a scientific approach and what works, we’re agnostic as to how we get there.
The DA mindset starts with seven fundamental principles:

 Delight customers

 Be awesome

 Context counts

 Be pragmatic

 Choice is good

 Optimize flow

 Organize around products/services

 Enterprise awareness

Principle: Delight Customers

Customers are delighted when our products and services not only fulfill their needs and
expectations, but surpass them. Consider the last time you checked into a hotel. If you’re lucky
there was no line, your room was available, and there was nothing wrong with it when you got
there. You were likely satisfied with the service, but that’s about it. Now imagine that you were
greeted by name by the concierge when you arrived, that your favorite snack was waiting for
you in the room, and that you received a complimentary upgrade to a room with a magnificent
view—all without asking. This would be more than satisfying and would very likely delight you.
Although the upgrade won’t happen every time you check in, it’s a nice touch when it does and
you’re likely to stick with that hotel chain because they treat you so well.

Successful organizations offer great products and services that delight their customers.
Systems design tells us to build with the customer in mind, to work with them closely, and to
build in small increments and then seek feedback, so that we better understand what will
actually delight them. As disciplined agilists, we embrace change because we know that our
stakeholders will see new possibilities as they learn what they truly want as the solution
evolves. We also strive to discover what our customers want and to care for our customers.
It’s much easier to take care of an existing customer than it is to get a new one.

Jeff Gothelf and Josh Seiden say it best in Sense & Respond: “If you can make a product
easier to use, reduce the time it takes a customer to complete a task, or provide the right
information at the exact moment, you win” [SenseRespond].

Principle: Be Awesome

Who doesn’t want to be awesome? Who doesn’t want to be part of an awesome team doing
awesome things while working for an awesome organization? We all want these things.
Recently, Joshua Kerievsky has popularized the concept that modern agile teams make people
awesome, and, of course, it isn’t much of a leap that we want awesome teams and awesome
organizations, too. Similarly, Mary and Tom Poppendieck observe that sustainable advantage
is gained from engaged, thinking people, as does Richard Sheridan in Joy Inc. [Sheridan].
Helping people to be awesome is important because, as Richard Branson of the Virgin Group
says, “Take care of your employees and they’ll take care of your business.”

There are several things that we, as individuals, can do to be awesome. First and foremost,
act in such a way that we earn the respect and trust of our colleagues: Be reliable, be honest,
be open, be ethical, and treat them with respect. Second, willingly collaborate with others.
Share information with them when asked, even if it is a work in progress. Offer help when it’s

 26

needed and, just as important, reach out for help yourself. Third, be an active learner. We
should seek to master our craft, always being on the lookout for opportunities to experiment
and learn. Go beyond our specialty and learn about the broader software process and business
environment. By becoming a T-skilled, “generalizing specialist,” we will be able to better
appreciate where others are coming from and thereby interact with them more effectively
[Agile Modeling]. Fourth, seek to never let the team down. Yes, it will happen sometimes, and
good teams understand and forgive that. Fifth, Simon Powers [Powers] points out that we
need to be willing to improve and manage our emotional responses to difficult situations.
Innovation requires diversity, and by their very nature, diverse opinions may cause emotional
reactions. We must all work on making our workplace psychologically safe.

Awesome teams also choose to build quality in from the very beginning. Lean tells us to
fix any quality issues and the way we worked that caused them. Instead of debating which
bugs we can skip over for later, we want to learn how to avoid them completely. As we’re
working toward this, we work in such a way that we do a bit of work, validate it, fix any issues
that we find, and then iterate. The Agile Manifesto is clear that continuous attention to
technical excellence and good design enhances agility [Manifesto].

Senior leadership within our organization can enable staff to be awesome individuals
working on awesome teams by providing them with the authority and resources required for
them to do their jobs, by building a safe culture and environment (see next principle), and by
motivating them to excel. People are motivated by being provided with the autonomy to do
their work, having opportunities to master their craft, and to do something that has purpose
[Pink]. What would you rather have, staff who are motivated or demotivated?3

Principle: Context Counts

Every person is unique, with their own set of skills, preferences for work style, career goals,
and learning styles. Every team is unique not only because it is composed of unique people,
but also because it faces a unique situation. Our organization is also unique, even when there
are other organizations that operate in the same marketplace that we do. For example,
automobile manufacturers such as Ford, Audi, and Tesla all build the same category of
product, yet it isn’t much of a stretch to claim that they are very different companies. These
observations—that people, teams, and organizations are all unique—lead us to a critical idea
that our process and organization structure must be tailored for the situation that we currently
face. In other words, context counts.

Figure 2.2, adapted from the Software Development Context Framework (SDCF) [SDCF],
shows that there are several context factors that affect how a team chooses its WoW. The
factors are organized into two categories: factors which have a significant impact on our
choice of life cycle (more on this in Chapter 6), and factors that motivate our choice of
practices/strategies. The practice/strategy selection factors are a superset of the life cycle-
selection factors. For example, a team of eight people working in a common team room on a
very complex domain problem in a life-critical regulatory situation will organize themselves
differently, and will choose to follow different practices, than a team of 50 people spread out
across a corporate campus on a complex problem in a nonregulatory situation. Although these
two teams could be working for the same company, they could choose to work in very
different ways.

3 If you think happy employees are expensive, wait until you try unhappy ones!

 27

Figure 2.2: Context factors that affect WoW choices.

There are several interesting implications of Figure 2.2. First, the further to the right on
each selection factor, the greater the risk faced by a team. For example, it’s much riskier to
outsource than it is to build our own internal team. A team with a lower set of skills is a riskier
proposition than a highly skilled team. A large team is a much riskier proposition than a small
team. A life-critical regulatory situation is much riskier than a financial-critical situation, which
in turn is riskier than facing no regulations at all. Second, because teams in different situations
will need to choose to work in a manner that is appropriate for the situation that they face, to
help them tailor their approach effectively, we need to give them choices. Third, anyone
interacting with multiple teams needs to be flexible enough to work with each of those teams
appropriately. For example, we will govern that small, colocated, life-critical team differently
than the medium-sized team spread across the campus. Similarly, an enterprise architect who
is supporting both teams will collaborate differently with each.

Scrum provides what used to be solid guidance for delivering value in an agile manner, but
it is officially described by only a 19-page booklet [ScrumGuide]. Disciplined Agile recognizes
that enterprise complexities require far more guidance, and thus provides a comprehensive
reference tool kit for adapting our agile approach for our unique context in a straightforward

 28

manner. Being able to adapt our approach for our context with a variety of choices rather than
standardizing on one method or framework is a good thing and we explore this further below.

Principle: Be Pragmatic

Many agilists are quite fanatical about following specific methods strictly. In fact, we have met
many who say that to “do agile right,” we need to have 5–9 people in a room, with the business
(product owner) present at all times. The team should not be disturbed by people outside the
team and should be 100 % dedicated to the project. However, in many established enterprises,
such ideal conditions rarely exist. The reality is that we have to deal with many suboptimal
situations, such as distributed teams, large team sizes, outsourcing, multiple team
coordination, and part-time availability of stakeholders.

DA recognizes these realities, and rather than saying “we can’t be agile” in these situations,
we instead say: “Let’s be pragmatic and aim to be as effective as we can be.” Instead of
prescribing “best practices,” DA provides strategies for maximizing the benefits of agile
despite certain necessary compromises being made. As such, DA is pragmatic, not purist in
its guidance. DA provides guardrails to help us make better process choices, not strict rules
that may not even be applicable given the context that we face.

Principle: Choice Is Good

Let’s assume that our organization has multiple teams working in a range of situations, which
in fact is the norm for all but the smallest of companies. How do we define a process that
applies to each and every situation that covers the range of issues faced by each team? How
do we keep it up to date as each team learns and evolves their approach? The answer is that
we can’t; documenting such a process is exponentially expensive. But does that mean we need
to inflict the same, prescriptive process on everyone? When we do that, we’ll inflict process
dissonance on our teams, decreasing their ability to be effective and increasing the chance that
they invest resources in making it look as if they’re following the process when in reality they’re
not. Or, does this mean that we just have a “process free-for-all” and tell all our teams to
figure it out on their own? Although this can work, it tends to be very expensive and time-
consuming in practice. Even with coaching, each team is forced to invent or discover the
practices and strategies that have been around for years, sometimes decades.

Developing new products, services, and software is a complex endeavor. That means we
can never know for sure what’s going to happen. There are many layers of activities going on
at the same time and it’s hard to see how each relates to the others. Systems are holistic and
not understandable just by looking at their components. Instead, we must look at how the
components of the system interact with each other. Consider a car, for example. While cars
have components, the car itself is also about how the car’s components interact with each
other. For example, putting a bigger engine in a car might make the car unstable if the frame
can’t support it, or even dangerous if the brakes are no longer sufficient.

When making improvements to how we work, we must consider the following:

 How people interact with each other;

 How work being done in one part of the system affects the work in others;

 How people learn; and

 How people in the system interact with people outside of the system.
These interactions are unique to a particular organization. The principle of “context

counts” means we must make intelligent choices based on the situation we are in. But how?
We first recognize that we’re not trying to figure out the best way to do things up front, but

 29

rather create a series of steps, each either making improvements on what we’re doing or by
learning something that will increase the likelihood of improvement the next time.

Each step in this series is presented as a hypothesis; that is, a conjecture that it will be an
improvement if we can accomplish it. If we get improvement, we’re happy and can go on to
the next step. If we don’t, we should ask why we didn’t. Our efforts should lead to either
improvement or learning, which then sets up the next improvement action. We can think of
this as a scientific approach as we’re trying actions and validating them. The cause may be that
we took the wrong action, people didn’t accept it, or it was beyond our capability.

Here’s an example. Let’s say that we see our people are multitasking a lot. Multitasking is
usually caused by people working on too many things that they are not able to finish quickly.
This causes them to go from one task to another and injects delays in their workflow as well as
anyone depending upon them. How to stop this multitasking depends on the cause or causes of
it. These are often clear or can be readily discerned. Even if we’re not sure, trying something
based on what’s worked in similar situations in the past often achieves good results or learning.
The salient aspect of Disciplined Agile is that we use practices that are germane to our situation,
and in order to do that we need to know what practices exist that we could choose from.

Different contexts require different strategies. Teams need to be able to own their own
process and to experiment to discover what works in practice for them given the situation
that they face. As we learned in Chapter 1, DAD provides six life cycles for teams to choose
from and 21 process goals that guide us toward choosing the right practices/strategies for our
team given the situation that we face. Yes, it seems a bit complicated at first, but this approach
proves to be a straightforward strategy to help address the complexities faced by solution
delivery teams. Think of DAD, and DA in general, as the scaffolding that supports our efforts
in choosing and evolving our WoW.

This choice-driven strategy is a middle way. At one extreme, we have prescriptive methods,
which have their place, such as Scrum, Extreme Programming (XP), and SAFe®, which tell us
one way to do things. Regardless of what the detractors of these methods claim, these
methods/frameworks do in fact work quite well in some situations, and as long as we find
ourselves in that situation, they’ll work well for use. However, if we’re not in the situation
where a certain method fits, then it will likely do more harm than good. At the other extreme
are creating our own methods by looking at our challenges, creating new practices based on
principles, and trying them as experiments and learning as we go. This is how methods4 that
tell us to experiment and learn as we go developed their approach. This works well in practice,
but can be very expensive, time-consuming, and can lead to significant inconsistencies
between teams, which hampers our overall organizational process. Spotify® had the luxury of
evolving their process within the context of a product company, common architecture, no
technical debt, and a culture that they could grow rather than change—not to mention several
in-house experts. DA sits between these two extremes; by taking this process-goal-driven
approach, it provides process commonality between teams that is required at the
organizational level, yet provides teams with flexible and straightforward guidance that is
required to tailor and evolve their internal processes to address the context of the situation
that they face. Teams can choose—from known strategies—the likely options to then
experiment with, increasing the chance that they find something that works for them in

4 Spotify, like other methods, is a great source of potential ideas that we’ve mined in DA. We’ve particularly found their

experimental approach to process improvement, which we’ve evolved into guided experiments (Chapter 1), to be useful.
Unfortunately, many organizations try to adopt the Spotify method verbatim, which is exactly what the Spotify people tell us not
to do. The Spotify method was great for them in their context several years ago. They are clear that if we are copying what they
did then, that is not Spotify now. Our context, even if we happen to be a Swedish online music company, is different.

 30

practice. At a minimum, it at least makes it clear that they have choices, that there is more
than the one way described by the prescriptive methods.

People are often surprised when we suggest that mainstream methods such as Scrum and
Extreme Programming (XP) are prescriptive, but they are indeed. Scrum mandates a daily
standup meeting (a Scrum), no longer than 15 minutes, to which all team members must
attend; that teams must have a retrospective at the end of each iteration (sprint); and that team
size should not be more than nine people. Extreme Programming prescribes pair
programming (two people sharing one keyboard) and test-driven development (TDD);
granted, both of these are great practices in the right context. We are not suggesting that
prescription is a bad thing, we’re merely stating that it does exist.

In order to provide people with choices from which they can choose their way of working
(WoW), DA has gathered strategies and put them into context from a wide array of sources.
An important side effect of doing so is that it quickly forced us to take an agnostic approach.
In DA, we’ve combined strategies from methods, frameworks, bodies of knowledge, books,
our practical experiences helping organizations to improve, and many other sources. These
sources use different terminology, sometimes overlap with each other, have different scopes,
are based on different mindsets, and quite frankly often contradict each other. Chapter 3 goes
into greater detail about how DA is a hybrid tool kit that provides agnostic process advice. As
described earlier, leadership should encourage experimentation early in the interest of learning
and improving as quickly as possible. However, we would suggest that by referencing the
proven strategies in Disciplined Agile, we will make better choices for our context, speeding
up process improvement through failing less. Better choices lead to better outcomes, earlier.

Principle: Optimize Flow

Although agile sprang from lean thinking in many ways, the principles of flow look to be
transcending both. Don Reinertsen, in Principles of Product Development Flow: 2nd Edition.
[Reinertsen], provides more direct actions we can take to accelerate value realization. Looking
at the flow of value enables teams to collaborate in a way as to effectively implement our
organization’s value streams. Although each team may be but one part of the value stream,
they can see how they might align with others to maximize the realization of value.

The implication is that as an organization we need to optimize our overall workflow. DA
supports strategies from agile, lean, and flow to do so:

1. Optimize the whole. DA teams work in an “enterprise-aware” manner. They realize

that their team is one of many teams within their organization and, as a result, they

should work in such a way as to do what is best for the overall organization and not

just what is convenient for them. More importantly, they strive to streamline the

overall process, to optimize the whole as the lean canon advises us to do. This

includes finding ways to reduce the overall cycle time—the total time from the

beginning to the end of the process to provide value to a customer [Reinertsen].

2. Measure what counts. Reinertsen’s exhortation, “If you only quantify one thing,
quantify the cost of delay,” provides an across-the-organization view of what to
optimize. “Cost of delay” is the cost to a business in value when a product is delayed.
As an organization or as a value stream within an organization, and even at the team
level, we will have outcomes that we want to achieve. Some of these outcomes will
be customer focused and some will be improvement focused (often stemming from
improving customer-focused outcomes). Our measures should be to assist in
improving outcomes or in improving our ability to deliver better outcomes.

 31

3. Deliver small batches of work continuously at a sustainable pace. Small batches

of work not only enable us to get feedback faster, they enable us to not build things

of lesser value, which often get thrown into a project. Dr. Goldratt, creator of Theory

of Constraints (ToC), once remarked, “Often reducing batch size is all it takes to

bring a system back into control” [Goldratt]. By delivering consumable solutions

frequently, we can adjust what’s really needed and avoid building things that aren’t.

By “consumable,” we mean that it is usable, desirable, and functional (it fulfills its

stakeholder’s needs). “Solution” refers to something that may include software,

hardware, changes to a business process, changes to the organizational structure of

the people using the solution, and of course any supporting documentation.

4. Attend to delays by managing queues. By attending to queues (work waiting to
be done), we can identify bottlenecks and remove them using concepts from lean,
Theory of Constraints, and Kanban. This eliminates delays in workflow that create
extra work.

5. Improve continuously. Optimizing flow requires continuous learning and
improvement. The process goal Evolve WoW (Chapter 24) captures strategies to
improve our team’s work environment, our process, and our tooling infrastructure
over time. Choosing our way of working is done on a continuous basis. This learning
is not just how we work but what we are working on. Probably the most significant
impact of Eric Ries’ work in Lean Startup is the popularization of the experimentation
mindset—the application of fundamental concepts of the scientific method to
business. This mindset can be applied to process improvement following a guided
continuous improvement (GCI) strategy that we described in Chapter 1. Validating
our learnings is one of the guidelines of the DA mindset. Improve continuously is
also one of the promises that disciplined agilists make to one another (see below).

6. Prefer long-lived dedicated product teams. A very common trend in the agile
community is the movement away from project teams to cross-functional product
teams. This leads us to the next principle: Organize Around Products/Services.

Principle: Organize Around Products/Services

There are several reasons why it is critical to organize around the products and services, or
more simply offerings, that we provide to our customers. What we mean by this is that we
don’t organize around job function, such as having a sales group, a business analysis group, a
data analytics group, a vendor management group, a project management group, and so on.
The problem with doing so is the overhead and time required to manage the work across these
disparate teams and aligning the differing priorities of these teams. Instead, we build dedicated
teams focused on delivering an offering for one or more customers. These teams will be cross-
functional in that they include people with sales skills, business analysis skills, management
skills, and so on.

Organizing around products/services enables us to identify and optimize the flows that
count, which are value streams. We will find that a collection of related offerings will define a
value stream that we provide to our customers, and this value stream will be implemented by
the collection of teams for those offerings. The value stream layer of the DA tool kit, captured
by the DA FLEX life cycle, was described in Chapter 1.

Organizing around products/services enables us to be laser-focused on delighting
customers. Stephen Denning calls this the Law of the Customer, that everyone needs to be
passionate about and focused on adding value to their customers [Denning]. Ideally, these are

 32

external customers, the people or organizations that our organization exists to serve. But
sometimes these are also internal customers as well, other groups or people whom we are
collaborating with so as to enable them to serve their customers more effectively.

Within a value stream, the industry has found that dedicated cross-functional product
teams that stay together over time are the most effective in practice [Kersten]. Having said
that, there will always be project-based work as well. Chapter 6 shows that DA supports life
cycles that are suited for project teams as well as dedicated product teams. Always remember,
choice is good.

Principle: Enterprise Awareness

When people are enterprise aware, they are motivated to consider the overall needs of their
organization, to ensure that what they’re doing contributes positively to the goals of the
organization and not just to the suboptimal goals of their team. This is an example of the lean
principle of optimizing the whole. In this case, “the whole” is the organization, or at least the
value stream, over local optimization at the team level.

Enterprise awareness positively changes people’s behaviors in several important ways.
First, they’re more likely to work closely with enterprise professionals to seek their guidance.
These people—such as enterprise architects, product managers, finance professionals,

auditors, and senior executives—are
responsible for our organization’s
business and technical strategies and
for evolving our organization’s overall
vision. Second, enterprise-aware
people are more likely to leverage and
evolve existing assets within our
organization, collaborating with the
people responsible for those assets
(such as data, code, and proven
patterns or techniques) to do so. Third,
they’re more likely to adopt and follow
common guidance, tailoring it where
need be, thereby increasing overall
consistency and quality. Fourth, they’re
more likely to share their learnings
across teams, thereby speeding up our
organization’s overall improvement
efforts. In fact, one of the process
blades of DA, Continuous
Improvement, is focused on helping
people to share learnings. Fifth,
enterprise-aware people are more likely

to be willing to work in a transparent manner although they expect reciprocity from others.
There is the potential for negative consequences as well. Some people believe that

enterprise awareness demands absolute consistency and process adherence by teams, not
realizing that context counts and that every team needs to make their own process decisions
(within bounds or what’s commonly called “guard rails”). Enterprise awareness can lead some
people into a state of “analysis paralysis,” where they are unable to make a decision because
they’re overwhelmed by the complexity of the organization.

 33

We Promise To

Because disciplined agilists believe in the principles of DA, they promise to adopt behaviors
that enable them to work both within their team and with others more effectively. These
promises are designed to be synergistic in practice, and they have positive feedback cycles
between them. The promises of the DA mindset are:

1. Create psychological safety and embrace diversity.
2. Accelerate value realization.
3. Collaborate proactively.
4. Make all work and workflow visible.
5. Improve predictability.
6. Keep workloads within capacity.
7. Improve continuously.

Promise: Create Psychological Safety and Embrace Diversity

Psychological safety means being able to show and employ oneself without fear of negative
consequences of status, career, or self-worth—we should be comfortable being ourselves in
our work setting. A 2015 study at Google found that successful teams provide psychological
safety for team members, that team members are able to depend on one another, there is
structure and clarity around roles and responsibilities, and people are doing work that is both
meaningful and impactful to them [Google].

Psychological safety goes hand-in-hand with diversity, which is the recognition that
everyone is unique and can add value in different ways. The dimensions of personal
uniqueness include, but are not limited to, race, ethnicity, gender, sexual orientation, agile,
physical abilities, socioeconomic status, religious beliefs, political beliefs, and other ideological
beliefs. Diversity is critical to a team’s success because it enables greater innovation. The more
diverse our team, the better our ideas will be, the better our work will be, and the more we’ll
learn from each other.

There are several strategies that enable us to nurture psychological safety and diversity
within a team:

1. Be respectful. Everyone is different, with different experiences and different
preferences. None of us is the smartest person in the room. Respect what other
people know that we don’t and recognize that they have a different and important
point of view.

2. Be humble. In many ways, this is key to having a learning mindset and to being
respectful.

3. Be ethical and trustworthy. People will feel safer working and interacting with us if
they trust us. Trust is built over time through a series of actions and can be broken
instantly by one action.

4. Make it safe to fail. There is a catchy phrase in the agile world called “fail fast.” We
prefer Al Shalloway’s advice, “Make it safe to fail so you can learn fast.” The idea is
to not hesitate to try something, even if it may fail. But the focus should be on learning
safely and quickly. Note that “safely” refers both to psychological safety and the safety
of our work. As we learned in Chapter 1, the aim of guided continuous improvement
(GCI) is to try out new ways of working (WoW) with the expectation that they will
work for us, while being prepared to learn from our experiment if it fails.

 34

Promise: Accelerate Value Realization

An important question to ask is: What is value? Customer value, something that benefits the
end customer who consumes the product/service that our team helps to provide, is what
agilists typically focus on. This is clearly important, but in Disciplined Agile, we’re very clear
that teams have a range of stakeholders, including external end customers. So, shouldn’t we
provide value to them as well?

Mark Schwartz, in The Art of Business Value, distinguishes between two types of value:
customer value and business value [Schwartz]. Business value addresses the issue that some
things are of benefit to our organization and perhaps only indirectly to our customers. For
example, investing in enterprise architecture, in reusable infrastructure, and in sharing
innovations across our organization offer the potential to improve consistency, quality,
reliability, and reduce cost over the long term. These things have great value to our
organization but may have little direct impact on customer value. Yet, working in an
enterprise-aware manner such as this is clearly a very smart thing to do.

There are several ways that we can accelerate value realization:
1. Work on small, high-value items. By working on the most valuable thing right now,

we increase the overall return on investment (ROI) of our efforts. By working on small
things and releasing them quickly, we reduce the overall cost of delay and our feedback
cycle by getting our work into the hands of stakeholders quickly. This is a very common
strategy in the agile community and is arguably a fundamental of agile.

2. Reuse existing assets. Our organization very likely has a lot of great stuff that we
can take advantage of, such as existing tools, systems, sources of data, standards, and
many other assets. But we need to choose to look for them, we need to be supported
in getting access to them and in learning about them, and we may need to do a bit of
work to improve upon the assets to make them fit our situation. One of the guidelines
of the DA mindset, described later in this chapter, is to leverage and enhance
organizational assets.

3. Collaborate with other teams. An easy way to accelerate value realization is to work
with others to get the job done. Remember the old saying: Many hands make light
work.

Promise: Collaborate Proactively

Disciplined agilists strive to add value to the whole, not just to their individual work or to the
team’s work. The implication is that we want to collaborate both within our team and with
others outside our team, and we also want to be proactive doing so. Waiting to be asked is
passive, observing that someone needs help and then volunteering to do so is proactive. We
have observed that are three important opportunities for proactive collaboration:

1. Within our team. We should always be focused on being awesome, on working
with and helping out our fellow team members. So if we see that someone is
overloaded with work or is struggling to work through something, don’t just wait to
be asked but instead volunteer to help out.

2. With our stakeholders. Awesome teams have a very good working relationship
with their stakeholders, collaborating with them to ensure that what they do is what
the stakeholders actually need.

3. Across organizational boundaries. In Chapter 1, we discussed how an
organization is a complex adaptive system (CAS) of teams interacting with other
teams.

 35

Promise: Make All Work and Workflow Visible

Disciplined Agile teams—and individual team members—make all their work and how they
are working visible to others.5 This is often referred to as “radical transparency” and the idea
is that we should be open and honest with others. Not everyone is comfortable with this.
Organizations with traditional methods have a lot of watermelon projects—green on the
outside and red on the inside—by which we mean that they claim to be doing well even though
they’re really in trouble. Transparency is critical for both supporting effective governance, a
topic covered in greater detail in Chapter 27, and for enabling collaboration as people are able
to see what others are currently working on.

Disciplined agile teams will often make their work visible at both the individual level as
well as the team level. It is critical to focus on our work in process, which is more than the
work in progress. Work in progress is what we are currently working on. Work in process is
our work in progress plus any work that is queued up waiting for us to get to it. Disciplined
agilists focus on work in process as a result.

Disciplined agile teams make their workflow visible, and thus have explicit workflow
policies, so that everyone knows how everyone else is working. This supports collaboration
because people have agreements as to how they are going to work together. It also supports
process improvement because it enables us to understand what is actually happening and
thereby increases the chance that we can detect where we have potential issues. It is important
that we are both agnostic and pragmatic in the way that we work, as we want to do the best
that we can in the context that we face.

Promise: Improve Predictability

Disciplined agile teams strive to improve their predictability to enable them to collaborate and
self-organize more effectively, and thereby to increase the chance that they will fulfill any
commitments that they make to their stakeholders. Many of the earlier promises we have
made work toward improving predictability. To see how to improve predictability, it is often
useful to see what causes unpredictability, such as technical debt and overloaded team
members, and to then attack those challenges.

Common strategies to improve predictability include:

 Pay down techical debt. Technical debt refers to the implied cost of future
refactoring or rework to improve the quality of an asset to make it easy to maintain
and extend. When we have significant technical debt, it becomes difficult to predict
how much effort work will be—working with high-quality assets is much easier than
working with low-quality assets. Because most technical debt is hidden (we don’t
really know what invokes that source code we’re just about to change or we don’t
know what’s really behind that wall we’re about to pull down as we renovate our
kitchen), it often presents us with unpredictable surprises when we get into the work.
Paying down technical debt, described by the process goal Improve Quality (Chapter
18), is an important strategy for increasing the predictability of our work.

 Respect work-in-process (WIP) limits. When people are working close to or at
their maximum capacity then it becomes difficult to predict how long something will
take to accomplish. Those two days’ worth of work might take me three months to
accomplish because I either let it sit in my work queue for three months or I do a
bit of the work at a time over a three-month period. Worse yet, the more loaded

5 This, of course, may be constrained by the need to maintain secrecy, resulting either from competitive or regulatory concerns.

 36

someone becomes, the more their feedback cycles will increase in length, generating
even more work for them (see below) and thus increasing their workload further. So
we want to keep workloads within capacity, another one of our promises.

 Adopt a test-first approach. With a test-first approach, we think through how we
will test something before we build it. This has the advantage that our tests both
specify as well as validate our work, thereby doing double duty, which will very likely
motivate us to create a higher quality work product. It also increases our
predictability because we will have a better understanding of what we’re working on
before actually working on it. There are several common practices that take a test-
first approach, including acceptance test-driven development (ATDD) where we
capture detailed requirements via working acceptance tests, and test-driven
development (TDD) where our design is captured as working developer tests. These
techniques are described in greater detail in Chapters 9 and 17, respectively.

 Reduce feedback cycles. A feedback cycle is the amount of time between doing
something and getting feedback about it. For example, if we write a memo and then
send it to someone to see what they think, and it then takes four days for them to
get back to us, the feedback cycle is four days long. But, if we work collaboratively
and write the memo together, a technique called pairing, then the feedback cycle is
on the order of seconds because they can see what we type and discuss it as we’re
typing. Short feedback cycles enable us to act quickly to improve the quality of our
work, thereby improving our predictability and increasing the chance that we will
delight our customers. Long feedback cycles are problematic because the longer it
takes to get feedback, the greater the chance that any problems we have in our work
will be built upon, thereby increasing the cost of addressing any problems because
now we need to fix the original problem and anything that extends it. Long feedback
cycles also increase the chance that the requirement for the work will evolve, either
because something changed in the environment or because someone simply changed
their mind about what they want. In both cases, the longer feedback cycle results in
more work for us to do and thereby increases our workload (as discussed earlier).

Promise: Keep Workloads Within Capacity

Going beyond capacity is problematic from both a personal and a productivity point of view.
At the personal level, overloading a person or team will often increase the frustration of the
people involved. Although it may motivate some people to work harder in the short term, it will
cause burnout in the long term, and it may even motivate people to give up and leave because
the situation seems hopeless to them. From a productivity point of view, overloading causes
multitasking, which increases overall overhead. We can keep workloads within capacity by:

 Working on small batches. Having small batches of work enables us to focus on
getting the small batch done and then move on to the next small batch.

 Having properly formed teams. Teams that are cross-functional and sufficiently
staffed increase our ability to keep workload within capacity because it reduces
dependencies on others. The more dependencies we have, the less predictable our
work becomes and therefore is harder to organize. Chapter 7 describes how to form
teams effectively.

 Take a flow perspective. By looking at the overall workflow we are part of, we can
identify where we are over capacity by looking for bottlenecks where work is queuing
up. We can then adjust our WoW to alleviate the bottleneck, perhaps by shifting
people from one activity to another where we need more capacity, or improving our

 37

approach to the activity where we have the bottleneck. Our aim, of course, is to
optimize flow across the entire value stream that we are part of, not to just locally
optimize our own workflow.

 Use a pull system. One of the advantages of pulling work when we are ready is that
we can manage our own workload level.

Promise: Improve Continuously

The really successful organizations—Apple, Amazon, eBay, Facebook, Google, and more—
got that way through continuous improvement. They realized that to remain competitive, they
needed to constantly look for ways to improve their processes, the outcomes that they were
delivering to their customers, and their organizational structures. This is why these
organizations adopt a kaizen-based approach of improving via small changes. In Chapter 1,
we learned that we can do even better than that by taking a guided continuous improvement
(GCI) approach that leverages the knowledge base contained within the DA tool kit.

Continuous improvement requires us to have agreement on what we’re improving. We’ve
observed that teams that focus on improving on the way that they fulfill the promises described
here, including improving on the way that they improve, tend to improve faster than those that
don’t. Our team clearly benefits by increasing safety and diversity, improving collaboration,
improving predictability, and keeping their workload within capacity. Our organization also
benefits from these things, as well as when we improve upon the other promises.

We Follow These Guidelines

To fulfill the promises that disciplined agilists make, they will choose to follow a collection of
guidelines that make them more effective in the way that they work. The guidelines of the DA
mindset are:

1. Validate our learnings.
2. Apply design thinking.
3. Attend to relationships through the value stream.
4. Create effective environments that foster joy.
5. Change culture by improving the system.
6. Create semi-autonomous, self-organizing teams.
7. Adopt measures to improve outcomes.
8. Leverage and enhance organizational assets.

Guideline: Validate Our Learnings

The only way to become awesome is to experiment with, and then adopt where appropriate,
a new WoW. In the GCI workflow, after we experiment with a new way of working, we assess
how well it worked, an approach called validated learning. Hopefully, we discover that the
new WoW works for us in our context, but we may also discover that it doesn’t. Either way,
we’ve validated what we’ve learned. Being willing and able to experiment is critical to our
process-improvement efforts. Remember Mark Twain’s aphorism: “It ain’t what you don’t
know that gets you into trouble. It’s what you know for sure that just ain’t so.”

Validated learning isn’t just for process improvement, we should also apply this strategy
to the product/service (offering) that we are providing to our customers. We can build in thin
slices, make changes available to our stakeholders, and then assess how well that change works
in practice. We can do this through demoing our offering to our stakeholders or, better yet,
releasing our changes to actual end users and measuring whether they benefited from these
changes.

 38

Guideline: Apply Design Thinking

Delighting customers requires us to recognize that our work is to create operational value
streams for our customers that are designed with them in mind. This requires design thinking
on our part. Design thinking means to be empathetic to the customer, to first try to understand
their environment and needs before developing a solution. Design thinking represents a
fundamental shift from building systems from our perspective to creatively solving customer
problems and, better yet, fulfilling needs they didn’t even know they had.

Design thinking is an exploratory approach that should be used to iteratively explore a
problem space and identify potential solutions for it. Design thinking has its roots in user-
centered design as well as usage-centered design, both of which influenced Agile Modeling,
one of many methods that the DA tool kit adopts practices from. In Chapter 6, we will learn
that DA includes the Exploratory life cycle, which is specifically used for exploring a new
problem space.

Guideline: Attend to Relationships Through the Value Stream

One of greatest strengths of the Agile Manifesto is its first value: Individuals and interactions
over processes and tools. Another strength is the focus on teams in the principles behind the
manifesto. However, the unfortunate side effect of this takes the focus away from the
interactions between people on different teams or even in different organizations. Our
experience, and we believe this is what the authors of the manifesto meant, is that the
interactions between the people doing the work are what is key, regardless of whether or not
they are part of the team. So, if a product manager needs to work closely with our
organization’s data analytics team to gain a better understanding of what is going on in the
marketplace, and our strategy team to help put those observations into context, then we want
to ensure that these interactions are effective. We need to proactively collaborate between
these teams to support the overall work at hand.

Caring for and maintaining healthy interactive processes is important for the people
involved and should be supported and enabled by our organizational leadership. In fact, there
is a leadership strategy called middle-up-down management [Nonaka], where management
looks “up” the value stream to identify what is needed, enables the team to fulfill that need,
and works with the teams downstream to coordinate work effectively. The overall goal is to
coordinate locally in a manner that supports optimizing the overall workflow.

Guideline: Create Effective Environments That Foster Joy

To paraphrase the Agile Manifesto, awesome teams are built around motivated individuals
who are given the environment and support required to fulfill their objectives. Part of being
awesome is having fun and being joyful. We want working in our company to be a great
experience, so we can attract and keep the best people. Done right, work is play.

We can make our work more joyful by creating an environment that allows us to work
together well. A key strategy to achieve this is to allow teams to be self-organizing—to let
them choose and evolve their own WoW, organizational structure, and working
environments. Teams must do so in an enterprise-aware manner—meaning we need to
collaborate with other teams, and there are organizational procedures and standards we must
follow and constraints on what we can do. The job of leadership is to provide a good
environment for teams to start in and then to support and enable teams to improve as they
learn over time.

 39

Guideline: Change Culture by Improving the System

Peter Drucker is famous for saying that “culture eats strategy for breakfast.” This is something
that the agile community has taken to heart, and this philosophy is clearly reflected in the
people-oriented nature of the Agile Manifesto. While culture is important, and culture change
is a critical component of any organization’s agile transformation, the unfortunate reality is
that we can’t change it directly. This is because culture is a reflection of the management
system in place, so to change our culture, we need to evolve our overall system.

From a systems point of view, the system is both the sum of its components plus how they
interact with each other [Meadows]. In the case of an organization, the components are the
teams/groups within it and the tools and other assets, both digital and physical, that they work
with. The interactions are the collaborations of the people involved, which are driven by the
roles and responsibilities that they take on and their WoW. To improve a system, we need to
evolve both its components and the interactions between those components in lock step.

To improve the components of our organizational system, we need to evolve our team
structures and the tools/assets that we use to do our work. The next DA mindset guideline,
create semi-autonomous, self-organizing teams, addresses the team side of this. In Chapter
18, we describe options for improving the quality of our infrastructure, which tends to be a
long-term endeavor requiring significant investment. To improve the interactions between
components, which is the focus of this book, we need to evolve the roles and responsibilities
of the people working on our teams and enable them to evolve their WoW.

To summarize, if we improve the system, then culture change will follow. To ensure that
culture change is positive, we need to take a validated learning approach to these
improvements.

Guideline: Create Semi-Autonomous, Self-Organizing Teams

Organizations are complex adaptive systems (CASs) made up of a network of teams or, if you
will, a team of teams. Although mainstream agile implores us to create “whole teams” that
have all of the skills and resources required to achieve the outcomes that they’ve been tasked
with, the reality is that no team is an island unto itself. Autonomous teams would be ideal but
there are always dependencies on other teams upstream that we are part of, as well as
downstream from us. And, of course, there are dependencies between offerings (products or
services) that necessitate the teams responsible for them to collaborate. This network-of-
teams organizational structure is being recommended by Stephen Denning in his Law of the
Network [Denning], Mik Kersten in his recommendation to shift from project to product
teams [Kersten], John Kotter in Accelerate [Kotter], Stanley McChrystal in his team-of-teams
strategy [MCSF], and many others.

Teams will proactively collaborate with other teams on a regular basis, one of the promises
of the DA mindset. Awesome teams are as whole as possible—they are cross-functional; have
the skills, resources, and authority required to be successful; and team members themselves
tend to be cross-functional generalizing specialists. Furthermore, they are organized around
the products/services offered by the value stream they are part of. Interestingly, when we
have teams dedicated to business stakeholders, budgeting becomes much simpler because we
just need to budget for the people aligned with each product/service.

Creating semi-autonomous teams is great start, but self-organization within the context of
the value stream is also something to attend to. Teams will be self-organizing, but they must
do so within the context of the overall workflow that they are part of. Remember the
principles, Optimize Flow and Enterprise Awareness, in that teams must strive to do what’s

 40

right for the overall organization, not just what is convenient for them. When other teams
also work in such a way, we are all much better for it.

Guideline: Adopt Measures to Improve Outcomes

When it comes to measurement, context counts. What are we hoping to improve? Quality?
Time to market? Staff morale? Customer satisfaction? Combinations thereof? Every person,
team, and organization has their own improvement priorities, and their own ways of working,
so they will have their own set of measures that they gather to provide insight into how they’re
doing and, more importantly, how to proceed. And these measures evolve over time as their
situation and priorities evolve. The implication is that our measurement strategy must be
flexible and fit for purpose, and it will vary across teams. The Govern Delivery Team process
goal (Chapter 27) provides several strategies, including goal question metric (GQM) [W] and
objectives and key results (OKRs) [W], that promote context-driven metrics.

Metrics should be used by a team to provide insights into how they work and provide
visibility to senior leadership to govern the team effectively. When done right, metrics will
lead to better decisions which in turn will lead to better outcomes. When done wrong, our
measurement strategy will increase the bureaucracy faced by the team, will be a drag on their
productivity, and will provide inaccurate information to whomever is trying to govern the
team. Here are several heuristics, described in detail in Chapter 27, to consider when deciding
on the approach to measuring our team:

 Start with outcomes.

 Measure what is directly related to delivering value.

 There is no “one way” to measure; teams need fit-for-purpose metrics.

 Every metric has strengths and weaknesses.

 Use metrics to motivate, not to compare.

 We get what we measure.

 Teams use metrics to self-organize.

 Measure outcomes at the team level.

 Each team needs a unique set of metrics.

 Measure to improve; we need to measure our pain so we can see our gain.

 Have common metric categories across teams, not common metrics.

 Trust but verify.

 Don’t manage to the metrics.

 Automate wherever possible so as to make the metrics ungameable.

 Prefer trends over scalars.

 Prefer leading over trailing metrics.

 Prefer pull over push.

Guideline: Leverage and Enhance Organizational Assets

Our organization has many assets—information systems, information sources, tools,
templates, procedures, learnings, and other things—that our team could adopt to improve our
effectiveness. We may not only choose to adopt these assets, we may also find that we can
improve them to make them better for us as well as other teams who also choose to work
with these assets. This guideline is important for several reasons:

1. A lot of good work has occurred before us. There is a wide range of assets within
our organization that our team can leverage. Sometimes we will discover that we need

 41

to first evolve the existing asset so that it meets our needs, which often proves faster
and less expensive than building it from scratch.

2. A lot of good work continues around us. Our organization is a network of semi-
autonomous, self-organizing teams. We can work with and learn from these teams,
proactively collaborating with them, thereby accelerating value realization. The
enterprise architecture team can help point us in the right direction and we can help
them learn how well their strategies work when applied in practice. Stephen Denning
stresses the need for the business operations side of our organization, such as vendor
management, finance, and people management, to support the teams executing the
value streams of our organization [Denning]. We must work and learn together in an
enterprise-aware manner if we are to delight our customers.

3. We can reduce overall technical debt. The unfortunate reality is that many
organizations struggle under significant technical debt loads, as we discussed earlier.
By choosing to reuse existing assets, and investing in paying down some of the
technical debt that we run into when doing so, we’ll slowly dig our way out of the
technical debt trap that we find ourselves in.

4. We can provide greater value quicker. Increased reuse enables us to focus on
implementing new functionality to delight our customers instead of just reinventing
what we’re already offering them. By paying down technical debt, we increase the
underlying quality of the infrastructure upon which we’re building, enabling us to
deliver new functionality faster over time.

5. We can support others. Just like our team collaborates with and learns from other
teams, so do those other teams collaborate and learn from us. At the organizational
level, we can enhance this through the creation of centers of excellence (CoEs) and
communities of practice (CoPs) to capture and share learnings across the
organization. CoEs and CoPs are two of many strategies described in Chapter 24.

#JoinTheRebellions!

Agile itself is a rebellion against traditional strategies, which for the most part were based on
theory, most of which has been shown to be false. But like all rebellions, the agile thinking of
the 1990s has become stale. Predictably, a new generation of rabble rousers has come along
with their ideas and, in some cases, movements.

Woody Zuill and Neil Killick started what we call the “hashtag rebellions” with their
#NoEstimates movement. Since then, #NoProjects [NoProjects], along with other
movements described in Table 2.1, have appeared. We believe there are some very interesting
and practical strategies coming out of these movements, many of which are captured in DA.

Are these hashtag rebellions good or bad? We think both. Our premise is that it depends
because #ContextCounts. We also feel that it’s unfortunate that these hashtags are negative
in the sense that they’re against something rather than for something, but we also recognize
that they have been very effective in drawing attention to significant problems in the software
process space. Most importantly, they represent a key agile philosophy to question the status
quo, to always ask if that’s really the way it needs to be.

 42

Table 2.1: Common hashtag rebellions and their visions.

Hashtag The Vision
#NoEstimates Estimates are a source of waste because they don’t add real value

for stakeholders; they’re rarely accurate to begin with, and when
we deploy regularly, people stop asking for them anyway. See the
process goals Plan the Release in Chapter 11 and Accelerate Value
Delivery in Chapter 19 for options.

#NoFrameworks This is pushback against the agile scaling frameworks that
experienced agilists find too restrictive and ineffective. More
accurately, this should be #NoPrescriptiveFrameworks, but that’s
just too long to tweet. While DA is arguably a framework (being a
collection of good options to consider experimenting with), it is
very different than the prescriptive scaling frameworks that many
organizations are struggling to succeed with. Instead, we call DA a
tool kit.

#NoProjects This is based on the observation that it is better to flow constant
value delivery to our stakeholders, rather than batch up blobs of
value that may or may not be worthwhile. It’s important to note
that this move away from project management in the agile
community is not a move away from management, but instead
from the inherent risks and overhead of projects.

#NoTemplates Following a template blindly is wrong, as the applicability may be
wrong. But selecting templates that suit context can both accelerate
delivery and improve quality. See the process goal Accelerate Value
Delivery in Chapter 19.

And a Few More Great Philosophies

Here are a few philosophies that we’ve seen work well in practice for disciplined agilists:
1. If it’s hard, do it more often. You believe system integration testing (SIT) is hard?

Instead of pushing it to the end of the life cycle, like traditionalists do, find a way to
do it every single iteration. Then find a way to do it every single day. Doing hard things
more often forces us to find ways, often through automation, to make them easy.

2. If it’s scary, do it more often. We’re afraid to evolve a certain piece of code? We’re
afraid to get feedback from stakeholders because they may change their minds? Then
let’s do it more often and find ways to overcome what we fear. Find ways to avoid
the negative outcomes, or to turn them positive. Fix that code. Make it easier to
evolve our solution. Help those stakeholders understand the implications of the
decisions they’re making.

3. Keep asking why. To truly understand something, we need to ask why it happened,
why it works that way, or why it’s important to others. Then ask why again, and
again, and again. Toyota calls this practice 5 whys analysis [Liker], but don’t treat five
as a magic number. We keep asking why until we get to the root cause.

4. Learn something every day. Disciplined agilists strive to learn something every
day. Perhaps it’s something about the domain they’re working in. Perhaps it’s
something about the technologies, or something about their tools. Perhaps it’s a new
practice, or a new way to perform a practice. There are a lot of learning opportunities
before us. Take them.

 43

In Summary

How can we summarize the Disciplined Agile mindset? Simon Powers sums up the mindset
in terms of three core beliefs [Powers]. These beliefs are:

1. The complexity belief. Many of the problems that we face are complex adaptive
problems, meaning by trying to solve these problems we change the nature of the
problem itself.

2. The people belief. Individuals are both independent from and dependent on their
teams and organizations. Human beings are interdependent. Given the right
environment (safety, respect, diversity, and inclusion) and a motivating purpose, it is
possible for trust and self-organization to arise. For this to happen, it is necessary to
treat everyone with unconditional positive regard.

3. The proactive belief. Proactivity is found in the relentless pursuit of improvement.

We find these beliefs compelling. In many ways, they summarize the fundamental
motivations behind why we need to choose our WoW. Because we face a unique context, we
need to tailor our WoW, and in doing so, we change the situation that we face that also requires
us to learn and evolve our WoW. The people belief motivates us to find a WoW that enables
us to work together effectively and safely, and the proactive belief reflects the idea that we
should continuously learn and improve.

Mindset Is Only the Beginning

The Disciplined Agile mindset
provides a solid foundation from
which our organization can
become agile, but it is only a
foundation. Our fear is that too
many inexperienced coaches are
dumbing down agile, hoping to
focus on the concepts overviewed
in this chapter. It’s a good start, but
it doesn’t get the job done in
practice. It isn’t sufficient to “be
agile,” we also need to know how
to “do agile.” It’s wonderful when
someone wants to work in a
collaborative, respectful manner,
but if they don’t actually know how
to do the work, they’re not going to
get much done. Software
development, and more
importantly solution delivery, is
complex—we need to know what
we’re doing.

45

3 DISCIPLINED AGILE DELIVERY (DAD) IN A NUTSHELL

Discipline is doing what you know needs to be done,
even if you don’t want to do it. —Unknown

Many organizations start their agile journey by adopting Scrum because it describes a good
strategy for leading agile software teams. However, Scrum is a very small part of what is
required to deliver sophisticated solutions to your stakeholders. Invariably, teams need to look
to other methods to fill in the process gaps
that Scrum purposely ignores, and Scrum is
very clear about this. When looking at other
methods, there is considerable overlap and
conflicting terminology that can be
confusing to practitioners as well as outside
stakeholders. Worse yet, people don’t always
know where to look for advice or even know
what issues they need to consider.

To address these challenges, Disciplined
Agile Delivery (DAD) provides a more
cohesive approach to agile solution delivery.
DAD is a people-first, learning-oriented,
hybrid agile approach to IT solution delivery.
These are the critical aspects of DAD:

1. People first. People, and the way
we work together, are the primary
determinant of success for a
solution delivery team. DAD
supports a robust set of roles, rights,
and responsibilities that you can
tailor to meet the needs of your
situation.

2. Hybrid. DAD is a hybrid tool kit
that puts great ideas from Scrum,
SAFe, Spotify, Agile Modeling
(AM), Extreme Programming (XP),
Unified Process (UP), Kanban, Lean Software Development, and several other
methods into context.

3. Full-delivery life cycle. DAD addresses the full-delivery life cycle, from team
initiation all the way to delivering a solution to your end users.

4. Support for multiple life cycles. DAD supports agile, lean, continuous delivery,
exploratory, and large-team versions of the life cycle. DAD doesn’t prescribe a single
life cycle because it recognizes that one process approach does not fit all. Chapter 6
explores life cycles in greater detail, providing advice for selecting the right one to
start with and then how to evolve from one to another over time.

5. Complete. DAD shows how development, modeling, architecture, management,
requirements/outcomes, documentation, governance, and other strategies fit
together in a streamlined whole. DAD does the “process heavy lifting” that other
methods leave up to you.

Key Points in This Chapter

 DAD is the delivery portion of the
Disciplined Agile (DA) tool kit—it is
not just another methodology.

 If you are using Scrum, XP, or
Kanban, you are already using
variations of a subset of DAD.

 DAD provides six life cycles to choose
from, it doesn’t prescribe a single way
of working—choice is good.

 DAD addresses key enterprise
concerns.

 DAD does the process heavy lifting so
that you don’t have to.

 DAD shows how agile development
works from beginning to end.

 DAD provides a flexible foundation
from which to tactically scale
mainstream methods.

 It is easy to get started with DAD.

 You can start with your existing WoW
and then apply DAD to improve it
gradually. You don’t need to make a
risky “big bang” change.

 46

6. Context-sensitive. DAD promotes what we call a goal-driven or outcome-driven
approach. In doing so, DAD provides contextual advice regarding viable alternatives
and their trade-offs, enabling you to tailor DAD to effectively address the situation
in which you find yourself. By describing what works, what doesn’t work, and more
importantly why, DAD helps you to increase your chance of adopting strategies that
will work for you and do so in a streamlined manner. Remember the DA principle:
Context Counts.

7. Consumable solutions over working software. Potentially shippable software is a
good start, but what we really need are consumable solutions that delight our
customers.

8. Self-organization with appropriate governance. Agile and lean teams are self-
organizing, which means that the people who do the work are the ones who plan and
estimate it. But that doesn’t mean they can do whatever they want. They must still work
in an enterprise-aware manner that reflects the priorities of their organization, and to
do that they will need to be governed appropriately by senior leadership. The Govern
Delivery Team process goal of Chapter 27 describes options for doing exactly that.

This chapter provides a brief overview of DAD, with the details coming in later chapters.

What’s New With DAD?

For existing DAD practitioners, there are several exciting changes that you’ll see in this book
compared to Disciplined Agile Delivery [AmblerLines2012]. We’ve made these changes based on
our work at dozens of organizations worldwide and, more importantly, from the input we’ve
received from a myriad of practitioners. These changes are:

1. The process goals have been refactored. Over the past six years, we’ve renamed
several goals, introduced a new goal, and combined two pairs of goals. We believe it
will make the goals more understandable.

2. Every goal has been updated. We’ve learned a lot over the last six years, a lot of
great techniques have appeared, and we’ve applied older techniques in new situations.
We’ve been posting updates to the goals online at DisciplinedAgileDelivery.com and
in our courseware, but this is the first time we’ve captured all of the updates in print.

3. All of the goals are captured visually. This is the first book to capture all of DAD’s
goal diagrams. We introduced the goal diagrams after the 2012 book came out,
although we have published some of them in our short book, Introduction to Disciplined
Agile Delivery, 2nd edition [LinesAmbler2018], and An Executive Guide to Disciplined
Agile [AmblerLines2017].

4. New and updated life cycles. We’ve explicitly introduced the Program life cycle
(we had described it in terms of team structure before) and the Exploratory life cycle.
We’ve also introduced both agile and lean versions of what we used to call the
Continuous Delivery life cycle.

5. Advice for applying the tool kit in practice. A big difference you’ll see in this book
is much more advice for how to apply DA in practice. This advice reflects an
additional six years of working with organizations around the world to adopt
Disciplined Agile strategies.

People First: Roles, Rights, and Responsibilities

Figure 3.1 shows the potential roles that people will fill on DAD teams, and Chapter 4
describes them in detail. The roles are organized into two categories: primary roles that we
find are critical to the success of any agile team and supporting roles that appear as needed.

 47

Figure 3.1: Potential roles on DAD teams.

The primary roles are:

 Team lead. This person leads the team, helping the team to be successful. This is
similar to the scrum master role in Scrum [ScrumGuide].

 Product owner (PO). A product owner is responsible for working with
stakeholders to identify the work to be done, prioritize that work, help the team to
understand the stakeholders’ needs, and help the team interact effectively with
stakeholders [ScrumGuide].

 Architecture owner (AO). An architecture owner guides the team through
architecture and design decisions, working closely with the team lead and product
owner when doing so [AgileModeling].

 Team member. Team members work together to produce the solution. Ideally,
team members are generalizing specialists, or working on becoming so, who are
often referred to as cross-skilled people. A generalizing specialist is someone with

 48

one or more specialities (such as testing, analysis, programming, etc.) and a broad
knowledge of solution delivery and the domain they are working in [GenSpec].

 Stakeholder. A stakeholder is someone who will be affected by the work of the
team, including but not limited to end users, support engineers, operations staff,
financial people, auditors, enterprise architects, and senior leadership. Some agile
methods call this role customer.

The supporting roles are:

 Specialist. Although most team members will be generalizing specialists, or at least
striving to be so, we sometimes have specialists on teams when called for. User
experience (UX) and security experts are specialists who may be on a team when there
is significant user interface (UI) development or security concerns respectively.
Sometimes business analysts are needed to support product owners in dealing with a
complex domain or geographically distributed stakeholders. Furthermore, roles from
other parts of the DA tool kit such as enterprise architects, portfolio managers, reuse
engineers, operations engineers, and others are considered specialists from a DAD
point of view.

 Independent tester. Although the majority of testing, if not all of it, should be
performed by the team, there can be a need for an independent test team at scale.
Common scenarios requiring independent testers include: regulatory compliance that
requires that some testing occur outside of the team, and a large program (a team of
teams) working on a complex solution that has significant integration challenges.

 Domain expert. A domain expert, sometimes called a subject matter expert (SME),
is someone with deep knowledge in a given domain or problem space. They often
work with the team or product owners to share their knowledge and experience.

 Technical expert. This is someone with deep technical expertise who works with
the team for a short time to help them overcome a specific technical challenge. For
example, an operational database administrator (DBA) may work with the team to
help them set up, configure, and learn the fundamentals of a database.

 Integrator. Also called a system integrator, they will often support independent
testers who need to perform system integration testing (SIT) of a complex solution
or collection of solutions.

Everyone on agile teams has rights and responsibilities. Everyone. For example, everyone has
the right to be given respect, but they also have the responsibility to give respect to others.
Furthermore, each role on an agile team has specific additional responsibilities that they must
fulfill. Rights and responsibilities are also covered in detail in Chapter 4.

A Hybrid of Great Ideas

We like to say that DAD does the heavy process lifting so that you don’t have to. What we
mean by that is that is we’ve mined the various methods, frameworks, and other sources to
identify potential practices and strategies that your team may want to experiment with and
adopt. We put these techniques into context, exploring fundamental concepts such as what
are the advantages and disadvantages of the technique, when would you apply the technique,
when wouldn’t you apply the technique, and to what extent would you apply it? Answers to
these questions are critical when a team is choosing its WoW.

Figure 3.2 indicates some of the methodologies and frameworks that we’ve mined for
techniques. For example, XP is the source of technical practices such as test-driven
development (TDD), refactoring, and pair programming to name a few. Scrum is the source

 49

of strategies such as product backlogs, sprint/iteration planning, daily coordination meetings,
and more. Agile Modeling gives us model storming, initial architecture envisioning,
continuous documentation, and active stakeholder participation. Where these methods go
into detail about these individual techniques, the focus of DAD, and DA in general, is to put
them into context and to help you choose the right strategy at the right time.

Figure 3.2: DAD is an agnostic hybrid of great ideas.

Choice Is Good: Process Goals

DAD includes a collection of 21 process goals, or process outcomes if you like, as Figure 3.3
shows. Each goal is described as a collection of decision points, issues that your team needs
to determine whether they need to address and, if so, how they will do so. Potential
practices/strategies for addressing a decision point, which can be combined in many cases,
are presented as lists. Goal diagrams, an example is shown in Figure 3.4, are similar
conceptually to mind maps, albeit with the extension of the arrow to represent the relative
effectiveness of options in some cases. Goal diagrams are, in effect, guides to help a team to
choose the best strategies that they are capable of doing right now given their skills, culture,
and situation. Chapter 5 explores DAD’s goal-driven approach and Sections 2–5 describe each
goal in detail.

 50

Figure 3.3: The process goals of DAD.

 51

Figure 3.4: The Improve Quality process goal diagram.

Choice Is Good: Multiple Life Cycle Support

Life cycles put an order to the activities that a team performs to build a solution. In effect,
they organize the techniques that we apply to get the work done. Because solution delivery
teams find themselves in a range of different situations, they need to be able to choose a life
cycle that best fits the context that they face. You can see in Figure 3.5 that DAD supports
six life cycles:

1. Agile. This is a Scrum-based life cycle for solution delivery projects.
2. Lean. This is a Kanban-based life cycle for solution delivery projects.
3. Continuous Delivery: Agile. This is a Scrum-based life cycle for long-standing

teams.
4. Continuous Delivery: Lean. This is a Kanban-based life cycle for long-standing

teams.
5. Exploratory. This is a Lean Startup-based life cycle for running experiments with

potential customers to discover what they actually want. This life cycle supports a
design thinking approach, as described in Chapter 2.

6. Program. This is a life cycle for a team of agile or lean teams.

Chapter 6 describes the six DAD life cycles in detail, as well as the traditional life cycle,
and provides advice for when to choose each one.

 52

Figure 3.5: DAD supports six life cycles.

Consumable Solutions Over Working Software

The Agile Manifesto suggests that we measure progress based upon “working software.” But
what if the customer doesn’t want to use it? What if they don’t like using it? From a design
thinking point of view, it is clear that “working” isn’t sufficient. Instead, we need to deliver
something that is consumable:

 It works. What we produce must be functional and provide the outcomes that our
stakeholders expect.

 It’s usable. Our solution should work well, with a well-designed user experience
(UX).

 It’s desirable. People should want to work with our solution, and better yet feel a
need to work with it, and where appropriate to pay us for it. As the first principle of
Disciplined Agile recommends, our solution should delight our customers, not just
satisfy them.

Additionally, what we produce isn’t just software, but instead is a full-fledged solution that
may include improvements to:

 Software. Software is an important part, but just a part, of our overall solution.

 Hardware. Our solutions run on hardware, and sometimes we need to evolve or
improve that hardware.

 Business processes. We often improve the business processes around the usage of
the system that we produce.

 Organizational structure. Sometimes the organization structure of the end users of
our systems evolves to reflect changes in the functionality supported by it.

 Supporting documentation. Deliverable documentation, such as technical
overviews and user manuals/help, is often a key aspect of our solutions.

 53

DAD Terminology

Table 3.1 maps common DAD terms to the equivalent terms in other approaches. There are
several important observations that we’d like to make about the terminology:

1. There is no standard agile terminology. There isn’t an ISO industry standard for
agile and, even if there was, it very likely would be ignored by agile practitioners.

2. Scrum terminology is questionable at best. When Scrum was first developed in
the 1990s, its creators purposefully decided to choose unusual terminology, some
adopted from the game of rugby, to indicate to people that it was different. That’s
perfectly fine, but given that DA is a hybrid we cannot limit it to apply arbitrary terms.

3. Terms are important. We believe terms should be clear. You need to explain what
a scrum meeting is, and that it isn’t a status meeting, whereas it’s pretty clear what a
coordination meeting is. Nobody sprints through a marathon.

4. Choose whatever terms you like. Having said all this, DAD doesn’t prescribe
terminology, so if you want to use terms like sprint, scrum meeting, or scrum master,
then go ahead.

5. Some mappings are tenuous. An important thing to point out is that the terms
don’t map perfectly. For example, we know that there are differences between team
leads, scrum masters, and project managers, but those differences aren’t pertinent for
this discussion.

Table 3.1: Mapping some of the varying terminology in the agile community.

DAD Scrum Spotify XP SAFe Traditional

Architecture
owner

- - Coach Solution
architect

Solution
architect

Coordination
meeting

Daily
standup

Huddle - Daily
standup

Status
meeting

Domain
expert

- Customer Customer Product
owner

Subject
matter
expert
(SME)

Iteration Sprint Sprint Iteration Iteration Timebox

Product
owner

Product
owner

Product
owner

Customer
representative

Product
owner

Change
control
board
(CCB)

Stakeholder - Customer Customer Customer Stakeholder

Team Team Squad, tribe Team Team Team

Team lead Scrum
master

Agile coach Coach Scrum
master

Project
manager

Context Counts: DAD Provides the Foundation for Scaling Agile Tactically

Disciplined Agile (DA) distinguishes between two types of “agility at scale:”
1. Tactical agility at scale. This is the application of agile and lean strategies on

individual DAD teams. The goal is to apply agile deeply to address all of the
complexities, what we call scaling factors, appropriately.

 54

2. Strategic agility at scale. This is the application of agile and lean strategies broadly
across your entire organization. This includes all divisions and teams within your
organization, not just your software development teams.

Let’s examine what it means to tactically scale agile solution delivery. When many people
hear “scaling,” they often think about large teams that may be geographically distributed in
some way. This clearly happens, and people are clearly succeeding at applying agile in these
sorts of situations, but there’s often more to scaling than this. Organizations are also applying
agile in compliance situations, either regulatory compliance that is imposed upon them (such
as Health Insurance Portability and Accountability Act [HIPAA], Personal Information
Protection and Electronic Documents Act [PIPEDA], or General Data Protection Regulation
[GDPR]); or self-selected compliance (such as Capability Maturity Model Integration [CMMI],
International Organization for Standardization [ISO], and Information Technology
Infrastructure Library [ITIL]).. They are also applying agile to a range of domain and technical
complexities, even when multiple organizations are involved (as in outsourcing). Figure 3.6
summarizes the potential tactical scaling factors that you need to consider when tailoring your
agile strategy. These scaling factors are a subset of the factors described in the Software
Development Context Framework (SDCF) in Chapter 2. The further out on each scale you
are, the greater the risk that you face.

Figure 3.6: Tactical scaling factors.

DAD provides a solid foundation for tactically scaling agile in several ways:

 DAD promotes a risk-value life cycle where teams attack the riskier work early to
help eliminate some or all of the risk, thereby increasing the chance of success. Some

 55

people like to refer to this as an aspect of “failing fast,” although we like to put it in
terms of learning fast or, better yet, succeeding early.

 DAD promotes self-organization enhanced with effective governance based on the
observation that agile teams work within the scope and constraints of a larger,
organizational ecosystem. As a result, DAD recommends that you adopt an effective
governance strategy that guides and enables agile teams.

 DAD promotes the delivery of consumable solutions over just the construction of
working software.

 DAD promotes Enterprise Awareness over team awareness (this is a fundamental
principle of DA, as discussed in Chapter 2). What we mean by this is that the team
should do what’s right for the organization—work to a common vision, leverage
existing legacy systems and data sources, and follow common guidelines—and not
just do what’s convenient or fun for them.

 DAD is context sensitive and goal driven, not prescriptive (another DA principle is
that Choice is Good). One process approach does not fit all, and DAD teams have
the autonomy to choose and evolve their WoW.

It’s Easy to Get Started With DAD

We’d like to share several strategies that we’ve seen applied to get people, teams, and
organizations started with DAD:

1. Read this book. A good way for individuals to get started is to read this book,
particularly Section 1. Sections 2–5 are reference material that you will use to choose
your WoW.

2. Take training. Even after reading this book, you’re likely to benefit from training as
it will help to round out your knowledge. At some point we hope that you choose to
get certified in Disciplined Agile (see Appendix A).

3. Start with a prescribed method/framework, then work your way out of
“method prison.” Teams might choose to start with an existing method such as
Scrum or SAFe and then apply the strategies described in this book to evolve their
WoW from there.

4. Start with DAD. We believe that it’s easier to start with DAD to begin with and
thereby avoid running into the limitations of prescriptive methods.

5. Work with an experienced agile coach. We highly suggest you bring in a Certified
Disciplined Agile Coach (CDAC) to help guide you through applying the DA tool
kit.

Organizational adoption of Disciplined Agile will take time, potentially years when you
decide to support agile WoWs across all aspects of your organization. Agile transformations
such as this, which evolve into continuous improvement efforts at the organizational level,
are the topics of Chapters 7 and 8 in our book, An Executive Guide to Disciplined Agile
[AmblerLines2017].

56

In Summary

Disciplined Agile Delivery (DAD) provides a pragmatic approach for addressing the unique
situations in which solution delivery teams find themselves. DAD explicitly addresses the
issues faced by enterprise agile teams that many agile methodologies prefer to gloss over. This
includes how to successfully initiate agile teams in a streamlined manner, how architecture fits
into the agile life cycle, how to address documentation effectively, how to address quality
issues in an enterprise environment, how agile analysis techniques are applied to address the
myriad of stakeholder concerns, how to govern agile and lean teams, and many more critical
issues. We’ll explore strategies to do this in Sections 2–5 of this book.

In this chapter, you learned that:

 DAD is the delivery portion of Disciplined Agile (DA).

 If you are using Scrum, XP, or Kanban, you are already using variations of a subset
of DAD.

 You can start with your existing WoW and then apply DAD to improve it gradually.
You don’t need to make a risky “big bang” change.

 DAD provides six life cycles to choose from; it doesn’t prescribe a single approach,
providing you with solid choices on which to base your WoW.

 DAD addresses key enterprise concerns and shows how to do so in a context-
sensitive manner.

 DAD does the heavy process lifting so that you don’t have to.

 DAD shows how agile development works from beginning to end.

 DAD provides a flexible foundation from which to tactically scale mainstream
methods.

 It is easy to get started with DAD, and there are multiple paths to do so.

57

4 ROLES, RIGHTS, AND RESPONSIBILITIES

Alone we can do so little, together we can do so much. —Helen Keller

This chapter explores the potential rights and responsibilities of people involved with
Disciplined Agile Delivery (DAD) teams, and the roles that they may choose to take on. We
say potential because you may discover that
you need to tailor these ideas to fit into your
organization’s cultural environment.
However, our experience is that the further
you stray from the advice we provide below,
the greater the risk you will take on. As
always, do the best you can do in the
situation that you face and strive to improve
over time. Let’s start with general rights and
responsibilities.

Rights and Responsibilities

Becoming agile requires a culture change
within your organization, and all cultures
have rules, some explicit and some implicit,
so that everyone understands their expected
behavior. One way to define expected
behavior is to negotiate the rights and
responsibilities that people have.
Interestingly, a lot of very good thinking on
this topic was done in the Extreme
Programming (XP) method, ideas which
we’ve evolved for Disciplined Agile (DA)
[RightsResponsibilities]. The following lists
of potential rights and responsibilities are
meant to act as a potential starting point for
your team.

As an agile team member, we have the right to:

 Be treated with respect.

 Work in a “safe environment.”

 Produce and receive quality work based upon agreed-upon standards.

 Choose and evolve our way of working (WoW).

 Self-organize and plan our work, signing up for tasks that we will work on.

 Own the estimation process—the people who do the work are the ones who estimate
the work.

 Determine how the team will work together—the people who do the work are the
ones who plan the work.

 Be provided good-faith information and decisions in a timely manner.

Key Points in This Chapter

 DAD suggests there are five primary
roles: team lead, product owner, team
member, architecture owner, and
stakeholder.

 An architecture owner is the technical
leader of the team and represents the
architecture interests of the
organization.

 DAD’s stakeholder role recognizes
that we need to delight all
stakeholders, not just our customers.

 In many situations, teams will rely on
people in supporting roles—
specialists, domain experts, technical
experts, independent testers, or
integrators—as appropriate and as
needed.

 DAD’s roles are meant to be, like
everything else, a suggested starting
point. You may have valid reasons for
tailoring the roles in your
organization.

58

To misquote Uncle Ben Parker, with great rights come great responsibilities. Agile team
members have the responsibility to:

 Optimize their WoW.

 Be willing to collaborate extensively within your team.

 Share all information including “work in process.”

 Coach others in your skills and experience.

 Expand your knowledge and skills outside your specialty.

 Validate your work as early as possible, working with others to do so.

 Attend coordination meetings in person or through other means if not colocated.

 Proactively look for ways to improve team performance.

 For teams following an agile life cycle (see Chapter 6), avoid accepting work outside
of the current iteration without consent from the team.

 Make all work visible at all times, typically via a task board, so that current team work
and capacity is transparent.

Potential Roles

DAD provides a set of five primary roles “out of the box,” three of which are similar to
those of Scrum. As you see in Figure 4.1, DAD has a team lead (similar to scrum master),
product owner, and team member. DAD adds stakeholder (an extension of customer), and
a role that we have seen to be extremely valuable in enterprise settings, that of architecture
owner. Ideally, we have a “whole team,” wherein we have all the skills on the team required
to get the job done. However, while not ideal, in nontrivial situations it is common to require
skills from outside the team and as such DAD includes a set of supporting roles that may
join the team as needed.

59

Figure 4.1: Potential DAD roles.

To start, let’s explore the primary roles.

Stakeholder

A stakeholder is someone who is materially impacted by the outcome of the solution. In this
regard, the stakeholder is clearly more than an end user or customer. A stakeholder could be
a:

 Direct user;

 Indirect user;

 Manager of users;

 Senior leader;

 Operations staff member;

 The “gold owner” who funds the team;

60

 Support (help desk) staff member;

 Auditor;

 Program/portfolio manager;

 Developer working on other solutions that integrate or interact with ours;

 Maintenance professional potentially affected by the development and/or
deployment of a software-based solution; or

 Many more roles.

Product Owner

The product owner (PO) is the person on the team who speaks as the “one voice of the
stakeholder” [ScrumGuide]. As you see in Figure 4.2, they represent the needs and desires of
the stakeholder community to the agile delivery team. As such, the product owner clarifies
any details regarding stakeholder desires or requirements for the solution and is also
responsible for prioritizing the work that the team performs to deliver the solution. While the
product owner may not be able to answer all questions, it is their responsibility to track down
the answer in a timely manner so that the team can stay focused on their tasks.

Each DAD team, or subteam in the case of large programs organized as a team of teams,
has a single product owner. A secondary goal for a product owner is to represent the work of
the agile team to the stakeholder community. This includes arranging demonstrations of the
solution as it evolves and communicating team status to key stakeholders.

As a stakeholder proxy, the product owner:

 Is the “go-to” person for domain information;

 Provides information and makes decisions in a timely manner;

 Prioritizes all work for the team, including but not limited to requirements (perhaps
captured as user stories), defects to be fixed, technical debt to be paid down, and
more (The product owner takes both stakeholder and team needs into account when
doing so.);

 Continually reprioritizes and adjusts scope based on evolving stakeholder needs;

 Is an active participant in modeling and acceptance testing;

 Helps the team gain access to expert stakeholders;

 Accepts the work of the team as either done or not done;

 Facilitates requirements modeling sessions, including requirements envisioning and
look-ahead modeling;

 Educates the team in the business domain; and

 Is the gateway to funding.

When representing the agile team to the stakeholder community, the product owner:

 Is the public face of the team to stakeholders;

 Demos the solution to key stakeholders, which may include coaching team members
to run the demo;

 Announces releases;

 Monitors and communicates team status to interested stakeholders, which may
include educating stakeholders on how to access and understand the team’s
automated dashboard;

 Organizes milestone reviews, which should be kept as simple as possible (see Govern
Delivery Team in Chapter 27);

61

 Educates stakeholders in the delivery team’s way of working (WoW); and

 Negotiates priorities, scope, funding, and schedules.
It is important to note that product owner tends to be a full-time job, and may even require

help at scale in complex domains. A common challenge that we see in organizations new to
agile is that they try to staff this role with someone on a part-time basis, basically tacking the
product owner role onto an already busy person.

Figure 4.2: The product owner as a bridge between the team and stakeholders.

Team Member

Team members focus on producing the solution for stakeholders. Team members will
perform testing, analysis, architecture, design, programming, planning, estimation, and many
more activities as appropriate. Note that not every team member will have every single one of
these skills, at least not yet, but they will have a subset of them and they will strive to gain
more skills over time. Ideally, team members are generalizing specialists, someone with one
or more specialties (such as analysis, programming, testing, etc.), a general knowledge of the
delivery process, at least a general knowledge of the domain that they’re working in, and the
willingness to pick up new skills and knowledge from others [GenSpec]. Figure 4.3 compares
four categories of skill levels: specialists who are narrowly focused on a single specialty,
generalists with a broad knowledge who are often good at organizing and coordinating others
but who do not have the detailed skills required to do the work, experts who have deep
knowledge and skills in many specialties, and generalizing specialists who are a happy medium
between generalists and specialists.

In practice, requiring people to be generalizing specialists can be daunting at first,
particularly for people who are new to agile, because this is very different than the traditional
approach of having generalists manage teams of specialists. The traditional approach is
problematic because of the overhead required to make it work—specialists do their jobs,
producing something for the next group of specialists downstream from them. To move the
work along, they need to write and maintain documentation, often containing new versions
of information that has already been documented upstream from them in the process. In
short, specialists inject a lot of waste into the process with interim artifacts, reviews of these
artifacts, and wait time to do the reviews. Generalizing specialists, on the other hand, have a
wider range of skills enabling them to collaborate more effectively with others, to do a wider
range of work and thereby avoid creation of interim artifacts. They work smarter, not harder.

62

Figure 4.3: The skill levels of team members.

The challenge is that if you’re new to agile, then you very likely have staff who are either
generalists or specialists, but very few generalizing specialists. The implication is that if you
currently have people who are either specialists or generalists, then you put your teams
together with these people. Because you want to improve your team’s productivity, you help
your team members become generalizing specialists through nonsolo work techniques such
as pair programming, mob programming, and modeling with others (see Grow Team
Members in Chapter 22). By doing so, over several months specialists will pick up a wider
range of skills and become more effective generalizing specialists as a result.

In addition to the general rights and responsibilities described earlier, team members have
several additional responsibilities. They will:

 Self-organize. Team members will identify tasks, estimate tasks, “sign-up” for tasks,
perform the tasks, and track their status toward completion.

 Go to the product owner (PO) for domain information and decisions. Although
team members will provide input to the product owner, in the end the product owner
is responsible for providing the requirements and prioritizing the work, not the team
members. It requires significant discipline on the part of team members to respect
this, and to not add new features (known as “scope creep”) or to guess at the details.

 Work with the architecture owner (AO) to evolve the architecture. The
architecture owner is responsible for guiding the team through architecture and
design work. Team members will work closely and collaboratively with the
architecture owner to identify and evolve the architectural strategy. When the team
isn’t able to come to an agreement around the direction to take, the architecture
owner may need to be the tie breaker and choose what they feel to be the best option,
which team members are expected to support. More on this below.

63

 Follow enterprise conventions and leverage
and enhance the existing infrastructure. One
of the DA principles (see Chapter 2) is to be
enterprise aware. An implication of this is that
DAD team members will adopt and have the
discipline to tailor, where appropriate, any
enterprise/corporate coding standards, user
interface design conventions, database
guidelines, and so on. They should also try to
reuse and enhance existing, reusable assets such
as common web services, frameworks, and yes,
even existing legacy data sources. The Leverage
and Enhance Existing Infrastructure process
goal is described in Chapter 26.

 Lead meetings. Although other agile methods
will assign this responsibility to the team lead, the
fact is that anyone on the team can lead or
facilitate meetings. The team lead is merely
responsible for ensuring that this happens.

Team Lead

An important aspect of self-organizing teams is that team leads facilitate or guide the team in
performing technical management activities instead of taking on these responsibilities
themselves. The team lead is a servant leader to the team, or better yet a host leader, creating
and maintaining the conditions that allow the team to be successful. This can be a hard role
to fill—attitude is key to their success.

The team lead is also an agile coach, helping to keep the team focused on delivering work
items and fulfilling their iteration goals and commitments that they have made to the product
owner. They act as a true leader, facilitating communication, empowering them to choose
their way of working (WoW), ensuring that the team has the resources that it needs, and
removing any impediments to the team (issue resolution) in a timely manner. When teams are
self-organizing, effective leadership is crucial to their success.

A team lead’s leadership responsibilities can be summarized as:

 Guides the team through choosing and evolving their WoW;

 Facilitates close collaboration across all roles and functions;

 Ensures that the team is fully functional and productive;

 Keeps the team focused within the context of their vision and goals;

 Is responsible for removal of team-based impediments and for the escalation of
organization-wide impediments, collaborating with organizational leadership to do
so;

 Protects the team from interruptions and external interferences;

 Maintains open, honest communication between everyone involved;

 Coaches others in the use and application of agile practices;

 Prompts the team to discuss and think through issues when they’re identified;

 Facilitates decision making, but does not make decisions or mandate internal team
activity; and

Why not call a team lead a
scrum master?
Since DAD supports several
life cycle approaches, not
every team in your
organization is likely to use
Scrum. Lean teams will have
team leads. So why confuse
your organization with two
different terms for team lead,
depending on the approaches
that they use? And what if a
Scrum team moves to a lean
approach, and then back to
Scrum? Would role names
have to change accordingly?
This clearly wouldn’t be
practical.

64

 Ensures that the team keeps their focus on producing a potentially consumable
solution.

When there are no project managers or resource/functional managers, team leads may be
asked to take on the responsibilities that people in these roles would have fulfilled. The
optional responsibilities that a team lead may be required to fulfill, and the challenges
associated in doing so, include:

 Assessing team members. There are several strategies for assessing or providing
feedback to people, described by the Grow Team Members process goal in Chapter
22, that you may apply. Doing so is often the responsibility of a resource manager,
but sometimes people in these roles are not available. When a team lead is responsible
for assessing their fellow team members, it puts them in a position of authority over
the people they’re supposed to lead and collaborate with. This in turn can significantly
alter the dynamics of the relationship that team members have with the team lead,
reducing their psychological safety when working with the team lead because they
don’t know how doing so will affect their assessment.

 Managing the team’s budget. Although the product owner is typically the gateway
to funding, somebody may be required to track and report how the funds are spent.
If the product owner does not do this then the team lead typically becomes
responsible for doing so.

 Management reporting. Ensures that someone on the team, perhaps themselves,
captures relevant team metrics and reports team progress to organizational leadership.
Hopefully this type of reporting is automated via dashboard technology, but if not, the
team lead is often responsible for manually generating any required reports. See the
Govern Delivery Team process goal in Chapter 27 for more on metrics.

 Obtains resources. The team lead is often responsible for ensuring that
collaborative tools, such as task boards for team coordination and whiteboards for
modeling, are available to the team.

 Meeting facilitation. Ensures that someone on the team, sometimes themselves,
facilitates the various meetings (coordination meetings, iteration planning meetings,
demos, modeling sessions, and retrospectives).

The team lead role is often a part-time effort, particularly on smaller teams. The implication
is that a team lead either needs to have the skills to also be a team member, or perhaps in
some cases an architecture owner (more on this below). However, on a team new to agile the
coaching aspects of being a team lead are critical to your success at adopting agile. This is
something that organizations new to agile can struggle with conceptually, because they’ve
never had to make a similar investment in their staff’s growth.

Another alternative is to have someone be the team lead on two or three teams, although
that requires the teams to stagger their ceremonies such as coordination meetings, demos, and
retrospectives so that the team lead can be involved. This can work with teams that are
experienced with agile thinking and techniques because they don’t require as much coaching.
Furthermore, as teams gel and become adept at self-organization, there is less need for
someone to be in the team lead role and it may be sufficient for someone to step up from
time to time to address team lead responsibilities.

65

Architecture Owner

The architecture owner (AO) is the person who guides the team through architecture and
design decisions, facilitating the identification and evolution of the overall solution design
[AgileModeling]. On small teams, the person in the role of team lead will often also be in the
role of architecture owner, assuming they have the skills for both roles. Having said that, our
experience is that it is hard enough to find someone qualified to fill either of these roles, let
alone both.

Although the architecture owner is typically the senior developer on the team—and
sometimes may be known as the technical architect, software architect, or solution architect—
it should be noted that this is not a hierarchical position into which other team members
report. They, just like any other team member, and are expected to sign up and deliver work
related to tasks like any other team member. Architecture owners should have a technical
background and a solid understanding of the business domain.

The responsibilities of the architecture owner include:

 Guiding the creation and evolution of the architecture of the solution that the team
is working on (Note that the architecture owner is not solely responsible for the
architecture; instead, they lead the architecture and design discussions.);

 Mentoring and coaching other team members in architecture practices and issues;

 Understanding the architectural direction and standards of your organization and
helping to ensure that the team adheres to them appropriately;

 Working closely with enterprise architects, if they exist, or they may even be an
enterprise architect (Note that this can be an interesting change for larger
organizations where their enterprise architects are not currently actively involved with
teams. For smaller organizations this is quite common.);

 Working closely with the product owner to help them to understand the needs of
technical stakeholders, the implications of technical debt, and the need to invest in
paying it down, and in some cases to understand and interact with team members
more effectively;

 Understanding existing enterprise assets such as frameworks, patterns, and
subsystems, and ensuring that the team uses them where appropriate;

 Ensuring that the solution will be easy to support by encouraging good design and
refactoring to minimize technical debt (See the Improve Quality process goal in
Chapter 18 for details.);

 Ensuring that the solution is integrated and tested on a regular basis, ideally via a
continuous integration (CI) strategy;

 Having the final say regarding technical decisions, but trying to avoid dictating the
architectural direction in favor of a collaborative, team-based approach (The
architecture owner should work very closely with the team to identify and determine
strategies to mitigate key technical risks, see the Prove Architecture Early process goal
in Chapter 15.); and

 Leading the initial architecture envisioning effort at the beginning of a release and
supporting the initial requirements envisioning effort (particularly when it comes to
understanding and evolving the nonfunctional requirements for the solution).

Potential Supporting Roles

We would like to be able to say that all you need are the five primary roles described above to
succeed. The fact is the primary roles don’t cover the entire gamut—it’s unlikely your team

66

will have all of the technical expertise that it needs. Your product owner couldn’t possibly
have expert knowledge in all aspects of the domain, and even if your organization had experts
at all aspects of solution delivery, it couldn’t possibly staff every single team with the full range
of expertise required. Your team may have the need to add some or all of the following roles:

1. Domain expert (subject matter expert). The product owner represents a wide
range of stakeholders, not just end users, so it isn’t reasonable to expect them to be
experts in every nuance of the domain, something that is particularly true in complex
domains. The product owner will sometimes bring in domain experts to work with
the team (e.g., a tax expert to explain the details of a requirement or the sponsoring
executive to explain the vision).

2. Specialist. Although most agile team members are generalizing specialists,
sometimes, particularly at scale, specialists are required. For example, on large teams
or in complex domains one or more agile business analysts may join the team to help
explore the requirements for what you’re building. On very large teams a program
manager may be required to coordinate the team leads on various squads/subteams.
You will also see specialists on teams when generalizing specialists aren’t yet
available—when your organization is new to agile it may be staffed with specialists
who haven’t yet made the transition to generalizing specialists.

3. Technical expert. Sometimes the team needs the help of technical experts, such as
a build master to set up their build scripts, an agile database administrator to help
design and test their database, or a security expert to provide advice around writing a
secure solution. Technical experts are brought in on an as-needed, temporary basis
to help the team overcome a difficult problem and to transfer their skills to one or
more developers on the team. Technical experts are often working on other teams
that are responsible for enterprise-level technical concerns or are simply specialists
on loan to your team from other delivery teams.

4. Independent tester. Although the majority of the testing is done by the people on
the DAD team themselves, some teams are supported by an independent test team
working in parallel who will validate their work throughout the life cycle. This
independent test team is typically needed for scaling situations within complex
domains, using complex technology, or addressing regulatory compliance issues

5. Integrator. For large DAD teams that have been organized into a team of
subteams/squads, the subteams are typically responsible for one or more subsystems
or features. The larger the overall team, generally the larger and more complicated
the solution being built. In these situations, the overall team may require one or more
people in the role of integrator responsible for building the entire solution from its
various subsystems. On smaller teams or in simpler situations, the architecture owner
is typically responsible for insuring integration, a responsibility that is picked up by
the integrator(s) for more complex environments. Integrators often work closely with
the independent test team, if there is one, to perform system integration testing
regularly throughout the release. This integrator role is typically only needed at scale
for complex technical solutions.

An interesting implication for organizations that are new to agile is that the agile teams
may need access to people in these supporting roles earlier in the life cycle than they are
accustomed to with traditional teams. And the timing of the access is often a bit less
predictable, due to the evolutionary nature of agile, than with traditional development. We’ve
found that people in these supporting roles will need to be flexible.

67

The Three Leadership Roles

We often refer to the team lead, product owner, and architecture owner as the leadership
triumvirate of the team. As you see in Figure 4.4, the product owner is focused on getting the
right product built, the architecture owner on building the product right, and the team lead
on building it fast. All three of these priorities must be balanced through close collaboration
by the people in these roles. Figure 4.4 also indicates what happens when one of these
priorities is ignored. When teams are new to agile, the center spot may prove to be quite small
at first, but over time the people in these three leadership roles, and more importantly the
entire team itself, will help to grow it.

Figure 4.4: Viewpoints of the three leadership roles.

Do We Need the Scrum Roles at All?

In the 1990s when Scrum was created, it was a different world. We were used to working in
specialist silos, building software from documents, and didn’t really know how and when to
collaborate, hence the need for a scrum master to forcibly bring team members together, unifying
them behind a team goal. These days, many younger developers have never worked in a siloed
environment. They don’t need a designated role within the team to ensure collaboration happens
effectively. Similarly, why do we need a formal product owner between the team and the rest of
our stakeholders? This degree of separation increases the chances of miscommunications and
limits opportunities of the teams to develop empathy for the people they are building the solution
for. In Scrum’s early days, it was difficult to gain access to stakeholders so the “mandatory” product

68

owner was created. It is more commonly accepted practice these days to have direct access to all
stakeholders, and hopefully active stakeholder participation.

In Disciplined Agile, we constantly need to remind teams that context counts, and choice
is good. Like everything in DA, the roles we outline are “good ideas” which may or may not
make sense for you. In the Form Team process goal (Chapter 7), we encourage you to consider
the roles that make sense for your team. If you are new to agile and there is little organizational
resistance to change, then you probably want to adopt the DAD classic roles. If your agile
maturity and capability are more advanced, or if adopting new roles would be too disruptive,
then you may wish to adapt roles accordingly.

Tailoring DAD Team Roles for Your Organization

As we mentioned earlier, you build your teams from the people that you have. Many
organizations find that they cannot staff some of the roles, or that some of the DAD roles
simply don’t fit well in their existing culture. As a result, they find they need to tailor the roles
to reflect the situation that they find themselves in. Tailoring the roles can be a very slippery
slope as we’ve found the DAD roles work very well in practice, so any tailoring that you do
likely increases the risk faced by the team. Table 4.1 captures tailoring options for the primary
roles, and the risks associated with doing so.

Table 4.1: Potential tailoring options for the primary roles.

Role Tailoring Options and Risks
Architecture
owner

 Application/solution architect. A traditional architect does not
work as collaboratively as an architecture owner, so runs the risk of
having their vision misunderstood or ignored by the team.

 No architecture owner. Without someone in the architecture owner
role, the team must actively collaborate to identify an architectural
strategy on their own, which tends to lead to the team missing
architectural concerns and paying the price later in the life cycle with
increased rework.

Product
owner

 Business analyst. Business analysts typically don’t have the decision-
making authority that a product owner does, so they become a
bottleneck when the team needs a decision quickly. Business analysts
also tend to favor production of requirements documentation rather
than direct collaboration with team members.

 Active stakeholder participation. Team members work directly with
stakeholders to understand their needs and to gain feedback on their
work. The team will need a way to identify and work to a consistent
vision, otherwise they risk getting pulled in multiple directions.

Stakeholder Personas. Although there are always stakeholders, you might not have
access to them, or more accurately access to the full range of them.
Personas are fictional characters that represent classes of stakeholders.
Personas enable the team to talk in terms of these fictional people and
to explore how these people would interact with the solution.

69

Role Tailoring Options and Risks
Team lead Scrum master. We’ve had mixed results with scrum masters on teams,

mostly because the Certified ScrumMaster® (CSM) designation requires
very little effort to gain. Few scrum masters seem to have the experience,
knowledge, or organizational understanding to be effective leaders.

 Project manager. By assigning work to people and then monitoring
them, a project manager will negate a team’s ability to benefit from
self-organization and will very likely decrease psychological safety on
the team. Having said that, a significant percentage of project
managers are willing, and able, to drop command-and-control
strategies in favor of a leadership approach.

 No team lead. We have seen teams that are truly self-organizing who
do not need a team lead. There have always been teams that have been
working together for a long time where people choose to address what
would normally be team lead responsibilities as needed, just like any
other type of work.

Team member Specialists. As we said earlier, if all you have available are specialists,
then that’s what you build your team from.

DAD and Traditional Roles

Many agile purists will insist that traditional roles such as project manager, business analyst
(BA), resource manager, and many others go away with agile. Although that may happen in
the long run, it isn’t practical in the short term. The elimination of traditional roles at the
beginning of your agile transformation is revolutionary and often results in resistance to, and
the undermining of, agile adoption. We prefer a more evolutionary, less disruptive approach
that respects people and their career aspirations. While agile requires different ways of
working, the skills and rigor of traditional specialties are still extremely valuable. Project
managers understand risk management, estimating strategies, and release planning. Classically
trained or certified business analysts bring a rich tool kit of modeling options (many of which
are described in the Explore Scope goal in Chapter 9). To say that we don’t need project
managers or business analysts is short-sighted, naïve, and disrespectful to these professions.

Having said that, the primary DAD roles are extremely effective in practice. When we
work with organizations to improve their WoW, we help as many people as we can to
transition out of their existing traditional roles into the DAD roles, which they often find
more fulfilling in practice. Figure 4.5 depicts common options for several traditional roles.
What we show are generalizations, and it’s important to recognize that people will choose
their own career paths based on their own preferences and desires. The important thing is to
recognize that everyone can find a place for themselves in an agile organization if they’re
willing to learn a new WoW and move into new roles.

70

Figure 4.5: Common transitions from traditional to DAD roles.

In Summary

This chapter explored the potential rights and responsibilities of people involved with DAD
teams, and the roles that they may choose to take on. We say potential because you need to
tailor these ideas to fit into your organization’s cultural environment. However, we showed
that the further you stray from the DAD roles and responsibilities, the greater the risk you
will take on. You learned:

 DAD defines five primary roles—team lead, product owner, team member,
architecture owner, and stakeholder—that appear on all teams.

 In many situations, teams will rely on people in supporting roles—specialists,
domain experts, technical experts, independent testers, or integrators—as
appropriate and as needed.

 DAD’s roles are meant to be, like everything else, a suggested starting point. You
may have valid reasons for tailoring the roles for your organization.

 With roles, as with everything else, do the best you can do in the situation that you
face and strive to improve over time.

71

5 PROCESS GOALS

We must learn not just to accept differences between ourselves and our ideas,
but to enthusiastically welcome and enjoy them. —Gene Roddenberry

Disciplined Agile Delivery (DAD) takes a straightforward approach to support teams in
choosing their way of working (WoW). Process goals guide teams through the process-related
decisions that they need to make to tailor agile
strategies to address the context of the situation
that they face. Some people like to call this
capability-driven WoW, process outcomes-
driven WoW, or a vector-driven approach.

Each of DAD’s process goals define a high-
level process outcome, such as improving quality
or exploring the initial scope, without
prescribing how to do so. Instead, a process goal
indicates the issues you need to consider, what
we call decision points, and some potential
options you may choose to adopt.

Process goals guide teams through the
process-related decisions that they need to make
to tailor and scale agile strategies to address the
context of the situation that they face. This
tailoring effort should take hours at most, not
days, and DAD’s straightforward goal diagrams
help you to streamline doing so. Process goals
are a recommended approach to support teams
in choosing their WoW, and are a critical part of
Disciplined Agile (DA)’s process scaffolding.

Why a Goal-Driven Approach?

In Chapter 1, we learned that there are several good reasons why a team should own their
process and why they should choose and then evolve their WoW over time. First, every team
faces a unique situation and therefore should tailor their approach to best address that
situation and evolve their WoW as the situation evolves. In other words, context counts.
Second, you need to have choices and know what those choices are—you can’t own your
process if you don’t know what’s for sale. Third, we want to be awesome at what we do, so
we need the flexibility to experiment with ways of working so that we can discover how to be
the most awesome team we can be.

Most teams struggle to truly own their process, mostly because they don’t have the process
expertise within the team to do so. So they need some help, and process goals are an important
part of that help. Our experience is that there are several fundamental advantages to taking a
goal-driven approach to agile solution delivery:

 It enables teams to focus on process outcomes, not on process compliance.

 It provides a concise, shared pathway to leaner, less wasteful process decisions.

 It supports choosing your WoW by making process decisions explicit.

Key Points in This Chapter

 Although every team works in a
unique way, they still need to
address the same process goals
(process outcomes).

 Process goals guide you through
what you need to think about and
your potential options; they don’t
prescribe what to do.

 DAD process goals provide you
with choices, each of which has
trade-offs.

 Strive to do the best you can do
right now in the situation that
you face.

 The DAD process goals appear
overly complicated at first, but
ask yourself what you would
remove.

72

 It makes your process options very clear and thereby makes it easier to identify the
appropriate strategy for the situation you find yourself in.

 It enables effective scaling by providing you with strategies that are sophisticated
enough to address the complexities that you face at scale.

 It takes the guesswork out of extending agile methods and thereby enables you to
focus on your actual job, which is to provide value to your stakeholders.

 It makes it clear what risks you’re taking on and thus enables you to increase the
likelihood of success.

 It hints at an agile maturity model (this is important for any organization struggling
to move away from traditional maturity models).

How Much Detail Is Enough?

The amount of process detail that you require as a person, or as a team, varies based on your
situation. In general, the more experienced you are, the less detail you need. Figure 5.1
overviews how we’ve chosen to capture the details of DAD, starting with high-level, outcome-
based process goals all the way down to the nitty-gritty details of a specific practice. This book
addresses the first three levels: process goals, process goal diagrams, and option tables. The
fourth level, detailed practice/strategy descriptions, would be tens of thousands of printed
pages—the agile/lean canon is very, very large and our aim with DAD is to help put it in
context for you.

As you see in Figure 5.1, there are four levels of detail when it comes to describing process
goals:

1. Process goal. The named process outcome, for example: Identify Architecture
Strategy, Accelerate Value Delivery, Deploy the Solution, or Grow Team Members.
Named process goals are useful to provide a consistent language to discuss process-
related issues across teams with potentially very different WoWs.

2. Process goal diagram. This is a visual depiction of the aspects you need to think
through about the goal, what we call decision points, and several options for each
decision point to choose from. We’re not saying that we’ve identified every possible
technique available to you, but we have identified enough to give you a good range
of options and to make it clear that you do in fact have choices. In many ways, a
process goal diagram is an advanced version of a decision tree, and an example of
one is depicted in Figure 5.4 later in this chapter. Process goal diagrams are useful for
experienced practitioners, including agile coaches, as overviews of what they need to
consider with tailoring the portion of their WoW addressed by that goal.

3. Option tables. An option table provides a brief summary of potential practices or
strategies that you should consider adopting to address a given decision point. For
each option the trade-offs associated with it are also provided so as to put it in
context. There is no such thing as a best practice—every given practice/strategy
works well in some contexts and is inappropriate in other contexts. Option tables
help you to identify what you believe to be the best option for your team to
experiment with in the current situation that you face. Table 5.1 provides an example
of one later in this chapter.

4. Practice/strategy descriptions. Every technique is described through blogs,
articles, and in some cases one or more books. For example, there are thousands of
blog postings and articles about test-driven development (TDD), as well as several
good books. Our aim is to point you in the right direction to these great resources.

73

Figure 5.1: Level of details with process goals.

Context Counts: Disciplined Agile Teams Are Goal-Driven

Figure 5.2 shows the goals for a DAD team grouped by the three phases of Inception,
Construction, and Transition, as well as the goals that are ongoing throughout the life cycle.

If you know your process history, you may have noticed that we adopted the phase names
from the Unified Process (UP) [Kruchten]. More accurately, we adopted three of the four
names from UP because DAD doesn’t have an elaboration phase, unlike UP. Some people
will point to this as evidence that DAD is just UP, but if you’re actually familiar with UP,
you’ll recognize that this clearly isn’t true. We choose to adopt these names because, frankly,
they were perfectly fine. Our philosophy is to reuse and leverage as many great ideas as
possible, including terminology, and not invent new terminology if we can avoid doing so.

74

Figure 5.2: The process goals of Disciplined Agile Delivery (DAD).

75

Process Goal Diagrams

Although listing the high-level process goals in Figure 5.2 is a good start, most people need
more information than this. To go to the next level of detail we use goal diagrams, the notation
for which is described in Figure 5.3 and an example of which is shown in Figure 5.4. First,
let’s explore the notation:

 Process goals. Process goals are shown as rounded rectangles.

 Decision points. Decision points, which are process issues that you need to consider
addressing, are shown as rectangles. Process goals will have two or more decision
points, with most goals having four or five decision points, although some have
more. Each decision point can be addressed by practices/strategies that are presented
in a list to the right. Sometimes there are decision points that you will not have to
address given your situation. For example, the Coordinate Activities process goal has
a Coordinate Across Program decision point that only applies if your team is part of
a larger “team of teams.”

 Ordered option lists. An ordered option list is depicted with an arrow to the left of
the list of techniques. What we mean by this is that the techniques appearing at the
top of the list are more desirable, generally more effective in practice, and the less
desirable techniques are at the bottom of the list. Your team, of course, should strive
to adopt the most effective techniques they are capable of performing given the
context of the situation that they face. In other words, do the best that you can but
be aware that there are potentially better techniques that you can choose to adopt at
some point. From the point of view of complexity theory, a decision point with an
ordered option list is effectively a vector that indicates a change path. In Figure 5.4
the Level of Detail of the Scope Document decision point has an ordered set of
options whereas the second one does not.

 Unordered option lists. An unordered option list is depicted without an arrow—
each option has advantages and disadvantages, but it isn’t clear how to rank the
options fairly.

 Potential starting points. Potential starting points are shown in bold italics. Because
there may be many techniques to choose from, we indicate “default” techniques in
bolded italics. These defaults are good starting points for small teams new to agile
that are taking on a straightforward problem—they are almost always strategies from
Scrum, Extreme Programming (XP), and Agile Modeling, with a few Unified
Process ideas thrown in to round things out.

76

Figure 5.3: The notation of a process goal diagram.

Figure 5.4: The goal diagram for Explore Scope.

77

It is common to combine several options from a given list in practice. For example,
consider the Explore Usage decision point in Figure 5.4—it is common for teams that are
new to agile to apply epics, user stories, and user story maps to explore usage
requirements.

Let’s explore the Explore Scope goal diagram of Figure 5.4 a bit more. This is a process goal
that you should address at the beginning of the life cycle during Inception (if you’re following
a life cycle that includes an
Inception phase; see Chapter
6). Where some agile
methods will simply advise
you to initially populate a
product backlog with some
user stories, the goal
diagram makes it clear that
you might want to be a bit
more sophisticated in your
approach. What level of detail
should you capture, if any?
How are you going to explore
potential usage of the system?
Or the UI requirements? Or
the business process(es)
supported by the solution?
Default techniques, or
perhaps more accurately
suggested starting points, are
shown in bold italics. Notice
how we suggest that you
likely want to default to
capturing usage in some way,
basic domain concepts (e.g.,
via a high-level conceptual diagram) in some way, and nonfunctional requirements in some
way. There are different strategies you may want to consider for modeling—choose the ones
that make sense for your situation and not that ones that don’t. You should also start thinking
about your approach to managing your work—a light specification approach of writing up
some index cards and a few whiteboard sketches is just one option you should consider. In
DAD, we make it clear that agile teams do more than just implement new requirements, hence
our recommendation to default to a work item list over a simplistic requirements (product)
backlog strategy. Work items may include new requirements to be implemented, defects to be
fixed, training workshops, reviews of other teams’ work, and so on. These are all things that
need to be sized, prioritized, and planned for. Finally, the goal diagram makes it clear that
when you’re exploring the initial scope of your effort that you should capture nonfunctional
requirements—such as reliability, privacy, availability, performance, and security requirements
(among many)—in some manner. The Explore Scope process goal is described in greater
detail in Chapter 9.

But This Is so Complicated!
Our strategy with DA is to explicitly recognize that
software development (and IT and organizations, in
general) are inherently complicated. DA doesn’t try to
dumb things down into a handful of “best practices.”
Instead, DA explicitly communicates the issues that you
face, the options that you have, and the trade-offs that
you’re making, and simplifies the process of choosing the
right strategies that meet your needs. DA provides
scaffolding to help you make better process decisions.

Yes, there are many process goals (21, in fact)
depicted in Figure 5.2. Which would you take out? We’ve
seen teams not address risk in any way, but that invariably
went poorly for them. We’ve also seen teams choose not
to address the goal Improve Quality, only to watch their
technical debt rise. In practice, you can’t safely choose to
ignore any of these goals. Similarly, consider the decision
points in Figure 5.4, would you drop any of those? Likely
not. Yes, it’s daunting that there is so much to take into
account to succeed at solution delivery in the long term,
and what we’ve captured appears to be a minimal set for
enterprise-class solution development.

78

Getting to the Details: Option Tables and References

The next level of detail is the options tables, an example of which is shown in Table 5.1 for
Explore Scope’s Explore Quality Requirements decision point. Each table lists the options,
which are practices or strategies, and the trade-offs of each one. The goal is to put each option
into context and, where appropriate, point you to more detail about that technique. We often
point to Wikipedia, indicated by the [W] reference, and sometimes to a book or article (such
as [ExecutableSpecs] for acceptance criteria).

Table 5.1: Describing the Explore Quality Requirements decision point.

Options (Ordered) Trade-Offs

Acceptance criteria.

Quality-focused approach
that captures detailed aspects
of a high-level requirement
from the point of view of a
stakeholder
[ExecutableSpecs].

 Motivates teams to think through detailed
requirements.

 Dovetails nicely into a behavior-driven development
(BDD) or acceptance test-driven development
(ATDD) approach.

 Many quality requirements are cross-cutting aspects
of several functional stories, so relying on acceptance
criteria alone risks missing details, particularly in new
requirements identified later in the life cycle.

Explicit list. Enables us to
capture quality requirements
in a “reusable manner” that
cross-cuts functional
requirements.

 Not attaching quality requirements to specific
functional requirements allows the option of using
proof-of-technology “spikes” rather than waiting for
an associated story.

 Requires a mechanism, such as acceptance criteria, to
ensure that the quality requirement is implemented
across the appropriate functional requirements.

Technical stories. Simple
strategy for capturing quality
requirements that is similar
to an explicit list.

 Works well when a quality requirement is
straightforward and contained.

 Not appropriate for quality requirements that cross-cut
many functional requirements because we can’t address
the quality requirement in a short period of time.

How to Apply Process Goals in Practice

Disciplined Agilists can process goals in several common scenarios:

 Identifying potential strategies to experiment with. We described guided process
improvement (GCI) in Chapter 1, where a team uses DAD as a reference to identify
techniques to experiment with. Because DAD puts options into context, as you saw
in Table 5.1, you are more likely to identify a technique that will work for you in your
environment.

 Enhancing retrospectives. The goal diagrams and supporting tables provide a tool
kit of potential options that you can choose to experiment with to resolve challenges
identified by the team.

 Checklists. Goal diagrams are often used by experienced teams to remind them of
potential techniques that they could choose to apply in their current situation.

 Process-tailoring workshops. Described in Chapter 1, process-tailoring workshops
are often used by new teams to identify or negotiate how they will work together. The

79

process goals often prove to be great resources to help focus those workshops, and
an easy way to use them is to print them out and put them up on the wall and then
work through them as a team.

 Maturity model.6 The ordered decision points effectively provide a focused maturity
model around a given decision point. More importantly, ordered decision points are
effectively vectors indicating an improvement path for teams to potentially follow.

 Have productive discussions about process choices. An interesting aspect of
process goals is that some of the choices they provide really aren’t very effective in
practice. WHAT?! We sometimes find teams following a technique because they
believe that’s the best strategy available, maybe they’ve been told it’s a “best practice,”
maybe it’s the best strategy they know about, maybe it’s the best they can do right
now, or maybe it’s been prescribed to them by their adopted methodology and they
never thought to look beyond it. Regardless, this strategy, plus other valid options are
now provided to them, with the trade-offs for each clearly described. This puts you
in a better position to compare and contrast strategies and potentially choose a new
strategy to experiment with.

In Summary

This book describes how you can choose your WoW, how your team can truly own its process.
The only way you can own your process is if you know what’s for sale. DAD’s process goals
help to make your process choices, and the trade-offs associated with them, explicit. In this
chapter, we explored several key concepts:

 Although every team works in a unique way, they still need to address the same
process goals (process outcomes).

 Process goals guide you through what you need to think about and your potential
options; they don’t prescribe what to do.

 DAD process goals provide you with choices, each of which have trade-offs.

 Strive to do the best you can do right now in the situation that you face, and to learn
and improve over time.

 If the DAD process goals appear overly complicated at first, ask yourself what you
would remove.

6 In DA, we’re not afraid to use “agile swear words” such as management, governance, phase, and yes, even “maturity model.”

81

6 CHOOSING THE RIGHT LIFE CYCLE

May your choices reflect your hopes, not your fears.
—Nelson Mandela

We have the privilege of working with organizations all over the world. When we go into an
organization, often to coach them in how to improve their way of working (WoW), we get to
observe what is actually happening within these organizations. One thing we see over and
over again, in all but the very
smallest of enterprises, is that they
have several delivery life cycles in
place across their teams. Some of
these teams will be following a
Scrum-based, agile project life
cycle whereas others will have
adopted a Kanban-based lean life
cycle. The more advanced teams,
particularly those moving toward
a DevOps mindset, will have
adopted a continuous delivery
approach [Kim]. Some may be
working on a brand-new business
idea and are following an
experimental “lean startup” style
of approach, and some teams may
still be following a more
traditional life cycle. The reason
why this happens, as we described
in Chapter 2, is because each team
is unique and in a unique situation.
Teams need a WoW that reflects
the context that they face, and an
important part of choosing an effective WoW is to select a life cycle that best fits their
situation. Disciplined Agile Delivery (DAD) scaffolding provides life cycle choices to your
delivery teams, while enabling consistent governance across them.

A Quick History Lesson: The Traditional Life Cycle

First and foremost, the traditional life cycle is not supported by DAD. There are several
different flavors of the traditional life cycle, sometimes called the serial life cycle, the waterfall
life cycle, or even the predictive life cycle. Figure 6.1 depicts what is known as the V model.
The basic idea is that a team works through functional phases, such as requirements,
architecture, and so on. At the end of each phase there is often a “quality gate” milestone
review which tends to focus on reviewing documentation. Testing occurs toward the end of
the life cycle, and each testing phase, at least in the V model, tends to correspond to an artifact-
creation phase earlier in the life cycle. The waterfall life cycle is based on 1960s/1970s theories
about how software development should work. Note that some organizations in the early
1990s and 2000s mistakenly instantiated rational unified process (RUP) as a heavyweight
process, so some practitioners think that RUP is a traditional process too. No, RUP is iterative

 Key Points in This Chapter

 Some teams within your organization will still
follow a traditional life cycle—DAD explicitly
recognizes this but does not provide support for
this shrinking category of work.

 DAD provides the scaffolding required for
choosing between, and then evolving, six
solution delivery life cycles (SDLCs) based on
either agile or lean strategies.

 Project-based life cycles, even agile and lean
ones, go through phases.

 Every life cycle has its advantages and
disadvantages; each team needs to pick the one
that best reflects their context.

 Common, lightweight, risk-based milestones
enable consistent governance; you don’t need to
force the same process on all of your teams.

 A team will start with a given life cycle and
often evolve away from it as they continuously
improve their WoW.

82

and incremental, but was often implemented poorly by people who didn’t move away from
the traditional mindset.

Figure 6.1: The traditional software development life cycle.

If the traditional approach is explicitly not included in DAD, why are we talking about it?
Because some teams are currently following a waterfall approach and need help moving away
from it. Worse yet, there are many people who believe that traditional strategies are applicable
to a wide range of situations. In one sense they are correct, but what they don’t understand is
that agile/lean strategies prove much better in practice for most of those situations. But, as
you’ll learn later in this chapter, there are a few situations where traditional strategies do in
fact make sense. But just a few.

The Project Mindset Leads to Agile Phases, and That’s Okay

Many organizations choose to fund solution delivery in terms of projects. These projects may
be date driven and have a defined start and end date, they may be scope driven in that they
must deliver specific functionality or a specific set of outcomes, or they may be cost driven in
that they must come in on or under a desired budget. Some projects have a combination of
these constraints, but the more constraints you put on a delivery team, the greater the risk of
project failure. Figure 6.2 depicts a high-level view of the project delivery life cycle, and as you
see, it has three phases:

1. Inception. Inception is sometimes called “sprint 0,” “iteration 0,” startup, or
initiation. The basic idea is that the team does just enough work to get organized and
going in the right direction. The team will
initially form itself, and invest some time in
initial requirements and architecture
exploration, initial planning, aligning itself
with the rest of the organization, and of
course securing funding for the rest of the
project. This phase should be kept as
simple and as short as possible while
coming to an agreement on how the team
believes it will accomplish the outcomes being asked of it by their stakeholders. The
average agile/lean team spends 11 work days, so a bit more than two weeks, in
Inception activities [SoftDev18].

Agile History Lesson
The term “iteration 0” was first
coined by Jim Highsmith, one of
the creators of the Agile Manifesto,
in his book Agile Software Development
Ecosystems in 2002 [Highsmith]. It
was later adopted and renamed
Sprint 0 by the Scrum community.

83

2. Construction. The aim of Construction is to produce a consumable solution with
sufficient functionality, what’s known as a minimal marketable release (MMR), to be
of value to stakeholders. The team will work closely with stakeholders to understand
their needs, to build a quality solution for them, to get feedback from them on a
regular basis, and then act on that feedback. The implication is that the team will be
performing analysis, design, programming, testing, and management activities
potentially every single day. More on this later.

3. Transition. Transition is sometimes referred to as a “release sprint” or a
“deployment sprint,” and if the team is struggling with quality, a “hardening sprint.”
The aim of Transition is to successfully release your solution into production. This
includes determining whether you are ready to deploy the solution and then actually
deploying it. The average agile/lean team spends six work days on Transition
activities, but when you exclude the teams that have fully automated testing and
deployment (which we wouldn’t do), it’s an average of 8.5 days [SoftDev18].
Furthermore, 26 % of teams have fully automated regression testing and deployment,
and 63 % perform Transition in one day or less.

Figure 6.2: The agile project life cycle (high level).

Although agile purists will balk at the concept of phases, and will often jump through
hoops such as calling Inception “sprint 0” and Transition a “release sprint,” the fact is that
agile project teams work in a serial manner at a high level. Teams need to invest some time at
the beginning to get going in the right direction (Inception/sprint 0), they need to spend time
producing the solution (Construction), and they need to spend time deploying the solution
(Transition/release sprint). This happens in practice and is very easy to observe if you choose
to. The important thing is to streamline your Inception and Transition efforts as much as
possible, and Construction, too, for that matter.

There is more to IT, and your organization in general, than solution delivery. For example,
your organization is likely to have data management, enterprise architecture, operations,
portfolio management, marketing, procurement, finance, and many other important
organizational aspects. A full system/product life cycle goes from the initial concept for the
solution, through delivery, to operations and support and often includes many rounds through
the delivery life cycle. Figure 6.3 depicts the system life cycle, showing how the delivery life
cycle, and the DevOps life cycle for that matter, is a subset of it. Although Figure 6.3 adds the
Concept (ideation), Production, and Retire phases, the focus of DAD and this book is on
delivery. Disciplined Agile (DA), however, includes strategies that encompass DAD,
Disciplined DevOps, the value stream, and the Disciplined Agile Enterprise (DAE) in general
[AmblerLines2017].

84

Figure 6.3: The system/solution/product life cycle (high level).

Shift Left, Shift Right, Deliver Continuously

Although some teams will take a project-
based approach, not all of them do and
over time we expect this trend to grow.
When a team is allowed to stay together
for a long period of time, typically longer
than a single project, we call this a stable
or long-standing team. When a long-
standing team is allowed to evolve its
WoW, we’ve seen some incredible things
happen—they become teams capable of
continuous delivery. The term “shift left”
is popular among agilists, often being
used to indicate that testing and quality
practices are being performed throughout
the entire life cycle. This is a good thing,
but there’s more to the “shifting” trend
than this. There are several important
trends, summarized in Figure 6.4, that will
affect the way a team evolves its WoW:

1. Testing and quality practices
shift left. Agilists are clearly
shifting testing practices left
through greater automation and
via replacing written
specifications with executable specifications via practices such as test-driven
development (TDD) [W] and behavior-driven development (BDD) [W]. TDD and
BDD, of course, are supported by the practice of continuous integration (CI) [W].
Adoption of these strategies are key motivators for an infrastructure as code strategy
where activities that are mostly manual on traditional teams become fully automated
on agile teams.

85

Figure 6.4. How life cycles evolve when you shift activities left and right.

86

2. Modeling and planning practices shift right. Agilists have also shifted
modeling/mapping and planning practices to the right in the life cycle so that we can
adapt to the feedback we’re receiving from stakeholders. In DAD, modeling and
planning are so important that we do them all the way through the life cycle in a
collaborative and iterative manner [AgileModeling].

3. Stakeholder interaction shifts right . DAD teams interact with stakeholders
throughout the entire endeavor, not just during the requirements and test phases
at the beginning and end of the life cycle.

4. Stakeholder feedback shifts left. Traditional teams tend to leave serious
stakeholder feedback to user acceptance testing (UAT) performed during the
traditional test phase. DAD teams, on the other hand, seek to gain stakeholder
feedback as early and as regularly as possible throughout the entire endeavor.

5. Deployment practices shift left. Deployment practices are being fully automated
by agile teams, another infrastructure as code strategy, so as to support continuous
deployment (CD). CD is a linchpin practice for DAD’s two continuous delivery life
cycles described below.

6. The real goal is continuous delivery. All of this shifting left and shifting right
results in teams that are able to work in a continuous delivery manner. Process
improvement is about working smarter, not harder.

Choice Is Good: DAD’s Life Cycles

DAD supports several life cycles for teams to choose from. These life cycles, described
in detail below and summarized in Figure 6.5, are:

1. Agile. Based on the Scrum
construction life cycle, teams
following this project life cycle will
produce consumable solutions via
short iterations (also known as
sprints or timeboxes).

2. Continuous Delivery: Agile.
Teams following this agile-based
life cycle will work in very short
iterations, typically one week or
less, where at the end of each
iteration their solution is released
into production.

3. Lean. Based on Kanban, teams
following this project life cycle will
visualize their work, reduce work
in process (WIP) to streamline
their workflow, and pull work into
the team one item at a time.

4. Continuous Delivery: Lean.
Teams following this lean-based
life cycle will release their work
into production whenever
possible, typically several times a
day.

87

5. Exploratory. Teams following this life cycle, based on Lean Startup [Ries] and design
thinking in general, will explore a business idea by developing one or more minimal
viable products (MVPs), which they run as experiments to determine what potential
customers actually want. This life cycle is often applied when a team faces a “wicked
problem” [W] in their domain.

6. Program. A program is effectively a large team that is organized into a team of teams.

Figure 6.5: DAD’s life cycles.

Now let’s explore each of these life cycles in greater detail. After that, we’ll discuss when to
consider adopting each one.

DAD’s Agile Life Cycle

DAD’s agile life cycle, shown in Figure 6.6, is based largely upon the Scrum life cycle with
proven governance concepts adopted from the Unified Process (UP) to make it enterprise
ready [Kruchten]. This life cycle is often adopted by project teams focused on developing a
single release of a solution, although sometimes a team will stay together and follow it again
for the next release (and the next release after that, and so on). In many ways, this life cycle
depicts how a Scrum-based project life cycle works in an enterprise-class setting, we’ve worked
with several teams that like to think of this as Scrum++, without being constrained by the
Scrum community’s cultural imperative to gloss over the activities of solution delivery that
they find inconvenient. There are several critical aspects to this life cycle:

 The Inception phase. As we described earlier, the team’s focus is to do just enough
work to get organized and going in the right direction. DAD aims to streamline the
entire life cycle from beginning to end, including the initiation activities addressed by
Inception. Inception ends when we have an agreed-upon vision regarding the
expected outcomes for the team and how we’re going to achieve them.

88

 Construction is organized into short iterations. An iteration is a short period of
time, typically two weeks or less, in which the delivery team produces a new,
potentially consumable version of their solution. Of course, for a new product or
solution you may not have something truly consumable until after having completed
several iterations. This phase ends when we have sufficient functionality, also known
as a minimal marketable release (MMR).

 Teams address work items in small batches. Working in small batches is a
fundamental of Scrum, and because this life cycle is based on Scrum, it’s an important
aspect of it. DAD teams, regardless of life cycle, are likely to work on a range of
things: implementing new functionality, providing stakeholders with positive
outcomes, running experiments, addressing end-user change requests coming in from
usage of the current solution running in production, paying down technical debt,
taking training, and many more. Work items are typically prioritized by the product
owner, primarily by business value although risk, due dates, and severity (in the case
of change requests) may also be taken into account. The Address Changing
Stakeholder Needs process goal (Chapter 16) provides a range of options for
managing work items. In each iteration, the team pulls a small batch of work off of
the work item list that they believe they can achieve during that iteration.

 Critical ceremonies have a defined cadence. Also like Scrum, this life cycle
schedules several agile ceremonies on specific cadences. At the beginning of each
iteration, the team performs detailed planning for the iteration, and at the end of the
iteration, we hold a demonstration. We hold a retrospective to evolve our WoW, and
we make a go-forward decision. We also hold a daily coordination meeting. The point
is that by prescribing when to hold these important work sessions, we take some of the
guess work out of the process. The downside is that Scrum injects a fair bit of process
overhead with ceremonies. This is a problem that the Lean life cycle addresses.

 The Transition phase. The aim of the Transition phase is to ensure that the solution is
ready to be deployed and, if so, to deploy it. This “phase” can be automated away (which
is exactly what happens when evolving toward the two continuous delivery life cycles).

 Explicit milestones. This life cycle supports the full range of straightforward, risk-
based milestones, as you see depicted along the bottom of the life cycle. The
milestones enable leadership to govern effectively, more on this later. By
“lightweight” we mean that milestones do not need to be a formal bureaucratic review
of artifacts. Ideally, they are merely placeholders for discussions regarding the status
and health of the initiative. See the Govern Delivery Team goal in Chapter 27 for a
more detailed discussion of how to keep milestones light.

 Enterprise guidance and roadmaps are explicitly shown. On the left-hand side
of the life cycle, you see that important flows come into the team from outside of the
delivery life cycle. That’s because solution delivery is just part of your organization’s
overall DevOps strategy, which in turn is part of your overall IT strategy. For
example, the initial vision and funding for your endeavor may be coming from a
product management group, and the roadmaps and guidance from other areas such
as enterprise architecture, data management, and security (to name a few). Remember,
DAD teams work in an enterprise-aware manner, and one aspect of doing so is to
adopt and follow appropriate guidance.

 Operations and support are depicted. If your team is working on the new release
of an existing solution then you are likely to receive change requests from existing
end users, typically coming to you via your operations and support efforts. For teams

89

working in a DevOps environment, it may be that you’re responsible for running and
supporting your solution in production.

Figure 6.6: DAD’s Agile life cycle.

90

DAD’s Continuous Delivery: Agile Life Cycle

DAD’s Continuous Delivery: Agile life cycle, shown in Figure 6.7, is a natural progression
from the Agile life cycle of Figure 6.6. Teams typically evolve to this life cycle from the Agile
life cycle, often adopting iteration lengths of one week or less. The key difference between
this and the Agile life cycle is that the Continuous Delivery: Agile life cycle results in a release
of new functionality at the end of each iteration rather than after several iterations. There are
several critical aspects to this life cycle:

 Automation and technical practices are key. Teams require a mature set of
technical practices around automated regression testing, continuous integration (CI),
and continuous deployment (CD). To support these practices, investment in tools
and paying down technical debt, and in particular writing the automated regression
tests that are missing, needs to occur.

 Inception occurred in the past. When the team was first initiated, Inception would
have occurred and it may have occurred again when significant change occurred such
as a major shift in business direction or technical direction. So, if such as shift occurs
again then yes, you should definitely invest sufficient effort to reorient the team—we
see this as an activity, not a phase, hence Inception isn’t depicted. Having said this,
we do see teams stop every few months and explicitly invest several days to negotiate,
at a high level, what they will do for the next few months. This is something that
SAFe calls big room planning and Agile Modeling calls an agile modeling session.
These techniques are discussed in the Coordinate Activities process goal (Chapter
23).

 Transition has become an activity. Through automation of testing and
deployment, the Transition phase has evolved from a multiday or multiweek effort
to a fully automated activity that takes minutes or hours.

 Explicit milestones and incoming workflows. There are still common, risk-based
milestones to support consistent governance. Some milestones are no longer
appropriate, in particular Stakeholder Vision and Proven Architecture would have
been addressed in the past (although if major changes occur there’s no reason why
you couldn’t address these milestones again). Incoming workflows from other parts
of the organization are shown, just as with the Agile and Lean life cycles.

91

Figure 6.7: DAD’s Continuous Delivery: Agile life cycle.

DAD’s Lean Life Cycle

DAD’s Lean life cycle, shown in Figure 6.8, promotes lean principles, such as minimizing
work in process, maximizing flow, a continuous streaming of work (instead of fixed
iterations), and reducing bottlenecks. This project-oriented life cycle is often adopted by teams
who are new to agile/lean who face rapidly changing stakeholder needs, a common issue for
teams evolving (sustaining) an existing legacy solution, and by traditional teams that don’t
want to take on the risk of the cultural and process disruption usually caused by agile adoption
(at least not right away). There are several critical aspects to this life cycle:

92

 Teams address work items one at a time. A major difference between the Lean
and Agile life cycles is the lack of iterations. New work is pulled from the work item
pool one item at a time as the team has capacity, as opposed to the iteration-based
approach where it is pulled into the team in small batches.

 Work items are prioritized just in time (JIT). Work items are maintained as a small
options pool, often organized into categories by prioritization time—some work
items are prioritized by value (and hopefully risk) or a fixed delivery date, some must
be expedited (often a severity 1 production problem or request from an important
stakeholder), and some work is intangible (such as paying down technical debt or
going on training). Prioritization is effectively performed on a JIT basis, with the team
choosing the most important work item at the time when they pull it in to be worked
on.

 Practices are performed when needed, as needed. As with work prioritization,
other practices such as planning, holding demos, replenishing the work item pool,
holding coordination meetings, making go-forward decisions, look-ahead modeling,
and many others are performed on a JIT basis. This tends to remove some of the
overhead that teams experience with the Agile life cycle, but requires more discipline
to decide when to perform the various practices.

 Teams actively manage their workflow. Lean teams use a Kanban board [W] to
manage their work. A Kanban board depicts the team’s high-level process in terms
of state, with each column on the board representing a state such as Needs a
Volunteer, Being Explored, Waiting for Dev, Being Built, Waiting for Test, Being
Tested, and Done. Those were just examples, because as teams choose their WoW,
every team will develop a board that reflects their WoW. Kanban boards are often
implemented on whiteboards or via agile management software. Work is depicted in
the form of tickets (stickies on the whiteboard), with a ticket being a work item from
the options pool/backlog or a subtask of a work item. Each column has a work-in-
progress (WIP) limit that puts an upper limit on the number of tickets that may be in
that state. As the team performs their work, they pull the corresponding tickets
through the process on their Kanban board so as to coordinate their work.

 Explicit phases, milestones, and incoming workflows. There is still an Inception
phase and a Transition phase as well risk-based milestones to support consistent
governance. Incoming workflows from other parts of the organization are shown,
just as with the Agile life cycle.

93

Figure 6.8: DAD’s Lean life cycle.

94

DAD’s Continuous Delivery: Lean Life Cycle

DAD’s Continuous Delivery: Lean life cycle, shown in Figure 6.9, is a natural progression
from the Lean life cycle. Teams typically evolve into this life cycle from either the Lean life
cycle or the Continuous Delivery: Agile life cycle. There are several critical aspects to this life
cycle:

 Delivery of new functionality is truly continuous. Changes to production are
delivered several times a day by the team, although the functionality may not be
turned on until it is needed (this is a
DevOps strategy called feature toggles
described in Chapter 19).

 Automation and technical practices are
key. This is similar to the Continuous
Delivery: Agile life cycle.

 Inception and Transition have
disappeared from the diagram. This
occurred for the same reasons they
disappeared for Continuous Delivery: Agile.

 Explicit milestones and incoming
workflows. Once again, similar to the
Continuous Delivery: Agile life cycle.

Figure 6.9: DAD’s Continuous Delivery: Lean life cycle.

Outcomes Lead to Continuous
Exploration
An interesting thing that we’ve
observed is that when you capture
work items as outcomes, instead of
as requirements such as user stories,
this life cycle tends to evolve into
continuous exploration of
stakeholder needs rather than the
continuous order taking that we see
with requirements-driven strategies.

95

DAD’s Exploratory Life Cycle

DAD’s Exploratory life cycle, shown in Figure 6.10, is based on the Lean Startup principles
advocated by Eric Ries. The philosophy of Lean Startup is to minimize up-front investments
in developing new products/services (offerings) in the marketplace in favor of small
experiments [Ries]. The idea is to run some experiments with potential customers to identify
what they want based on actual usage, thereby increasing our chance of producing something
they’re actually interested in. This approach of running customer-facing experiments to
explore user needs is an important design thinking strategy for exploring “wicked problems”
in your domain. There are several critical aspects to this life cycle:

 This is a simplified scientific method. We come up with a hypothesis of what our
customers want, we develop one or more minimal viable products (MVPs) which are
deployed to a subset of potential customers, then we observe and measure how they
work with the MVP(s). Based on the data we collect, we decide how we will go
forward. Do we pivot and rethink our hypothesis? Do we rework one or more MVPs
to run new experiments based on our improved understanding of customer needs?
Do we discard one or more ideas? Do we move forward with one or more ideas and
“productize them” into real customer offerings?

 MVPs are prototypes (at best). The MVPs we create are built hastily, often “smoke
and mirrors” or prototype-quality code, of which the sole purpose is to test out a
hypothesis. It is not the “real thing,” nor is it meant to be. It’s a piece of functionality
or service offering that we get out in front of our potential customers to see how they
react to it. See Figure 6.11 for an overview of MVPs and related concepts.

 Run several experiments in parallel. Ideally, this life cycle entails running several
experiments in parallel to explore our hypothesis. This is an improvement over Lean
Startup, which focuses on a single experiment at a time—although it is easier to run
a single experiment at a time, it takes longer to get to a good idea and, worse yet, runs
the risk of identifying a strategy before other options have been considered.

Figure 6.10: DAD’s Exploratory life cycle.

 Failed experiments are still successes. Some organizations are reluctant to run

experiments because they are scared of failing, which is unfortunate because an
exploratory approach such as this actually reduces your risk of product failure (which
tend to be large, expensive, and embarrassing). Our advice is to make it “safe to fail,”
to recognize that when an experiment has a negative result that this is actually a

96

success because you have inexpensively learned what won’t work, enabling you to
refocus on looking for something that will.

 Follow another life cycle to build the real product. Once we’ve discovered one
or more ideas that it appears will succeed in the market, we now need to build the
“real solution.” We do this by following one of the other DAD life cycles.

Figure 6.11: Exploring the terminology around MVPs.

We’ve seen several different flavors, or perhaps several different tailorings is a better way of
looking at it, over the years:

1. Exploration of a new offering. The most compelling reason, at least for us, is to
apply this life cycle to explore an idea that your organization has for a new product.

2. Exploration of a new feature. At a smaller scale, the Exploratory life cycle is
effectively the strategy for running an A/B test or split test where you implement
several versions of a new feature and run them in parallel to determine which one is
most effective.

3. Parallel proof of concepts (PoCs). With a PoC, you install and then evaluate a
package, sometimes called a commercial off-the-shelf solution (COTS), within your
environment. An effective way to decrease the risk of software acquisition is to run
several PoCs in parallel, one for each potential software package that you are
considering, and then compare the results to identify the best option available. This
is often referred to as a “bake-off.”

4. Strategy comparisons. Some organizations, particularly ones in very competitive
environments, will start up several teams initially to work on a product. Each team
basically works through Inception, and perhaps even a bit of Construction, the aim
being to identify a vision for the product and prove out their architectural strategy. In
this case, their work is more advanced than an MVP but less advanced than an MMR.
Then, after a period of time, they compare the work of the teams and pick the best
approach—the “winning team” gets to move forward and become the product team.

97

DAD’s Program Life Cycle for a “Team of Teams”

DAD’s Program life cycle, shown in Figure 6.12, describes how to organize a team of teams.
Large agile teams are rare in practice, but they do happen. This is exactly the situation that
scaling frameworks such as SAFe, LeSS, and Nexus address. There are several critical aspects
to this life cycle:

 There’s an explicit Inception phase. Like it or not, when a team is new, we need
to invest some up-front time getting organized, and this is particularly true for large
teams given the additional risk we face. We should do so as quickly as possible, and
the best way is to explicitly recognize what we need to do and how we’ll go about
doing so.

 Subteams/squads choose and then evolve their WoW. Subteams, sometimes
referred to as squads, should be allowed to choose their own WoW just like any other
team would. This includes choosing their own life cycles as well as their own
practices—to be clear, some teams may be following the Agile life cycle, some the
Continuous Delivery: Lean life cycle, and so on. We may choose to impose some
constraints on the teams, such as following common guidance and common strategies
around coordinating within the program (captured by the Coordinate Activities
process goal in Chapter 23). As Figure 6.13 implies, we will need to come to an
agreement around how we’ll proceed with cross-team system integration and cross-
team testing (if needed), options for which are captured by the Accelerate Value
Delivery process goal (Chapter 19) and the Develop Test Strategy process goal
(Chapter 12), respectively. Where a framework such as SAFe would prescribe a
strategy such as a release train to do this, DAD offers choices and helps you to pick
the best strategy for your situation.

 Subteams can be feature teams or component teams. For years within the agile
community, there has been a debate around feature teams versus component teams.
A feature team works vertical slices of functionality, implementing a story or
addressing a change request from the user interface all the way through to the
database. A component team works on a specific aspect of a system, such as security
functionality, transaction processing, or logging. Our experience is both types of
teams have their place, they are applicable in certain contexts but not others, and the
strategies can and often are combined in practice.

 Coordination occurs at three levels. When we’re coordinating between subteams,
there are three issues we need to be concerned about: coordinating the work to be
done, coordinating technical/architectural issues, and coordinating people issues. In
Figure 6.13, this coordination is respectively performed by the product owners, the
architecture owners, and the team leads. The product owners of each subteam will
self-organize and address work/requirements management issues among themselves,
ensuring that each team is doing the appropriate work at the appropriate time.
Similarly, the architecture ownership team will self-organize to evolve the architecture
over time and the team leads will self-organize to manage people issues occurring
across teams. The three leadership subteams are able to handle the type of small
course corrections that are typical over time. The team may find that they need to get
together occasionally to plan out the next block of work—this is a technique that
SAFe refers to as program increment (PI) planning and suggests that it occurs
quarterly. We suggest that you do it when and if it makes sense.

98

 System integration and testing occurs in parallel. Figure 6.12 shows that there is a
separate team to perform overall system integration and cross-team testing. Ideally, this
work should be minimal and entirely automated in time. We frequently need a separate
team at first, often due to lack of automation, but our goal should be to automate as
much of this work as possible and push the rest into the subteams. Having said that,
we’ve found that usability testing across the product as a whole, and similarly user
acceptance testing (UAT), requires a separate effort for logistical reasons.

 Subteams are as whole as they can be. The majority of the testing effort should
occur within the subteams just like it would on a normal agile team, along with
continuous integration (CI) and continuous deployment (CD).

 We can deploy any time we want. We prefer a CD approach to this, although teams
new to agile programs may start by releasing quarterly (or even less often) and then
improve the release cadence over time. Teams who are new to this will likely need a
Transition phase, some people call these “hardening sprints” or “deployment sprints”
the first few times. The Accelerate Value Delivery process goal (Chapter 19) captures
various release options for delivery teams and the Release Management process blade
[AmblerLines2017] for organizations as a whole. A process blade encompasses a
cohesive collection of process options, such as practices and strategies, that should be
chosen and then applied in a context-sensitive manner. Each process blade addresses
a specific capability, such as finance, data management, reuse engineering, or
procurement—just like process goals are described using process goal diagrams, so
are process blades.

 Scaling is hard. Some problems require a large team, but to succeed you need to
know what you’re doing. If you’re struggling with small-team agile, then you’re not
ready for large-team agile. Furthermore, as we learned in Chapter 3, team size is only
one of six scaling factors that our team may need to contend with, the others being
geographic distribution, domain complexity, technical complexity, organizational
distribution, and regulatory compliance. We cover these issues in greater detail at
DisciplinedAgileDelivery.com.

http://disciplinedagiledelivery.com/

99

Figure 6.12: The DAD Program life cycle.

100

Figure 6.13: A potential structure for organizing a large team of teams.

When Should You Adopt Each Life Cycle?

Every team should choose its own life cycle, but how do you do this? It’s tempting to have
your portfolio management team make this choice—well, at least it is for them. At best, they
should make a (hopefully solid) suggestion when they first initiate an endeavor, but in the end
the choice of life cycle should be made by the team if you want to be effective. This can be a
challenging choice, particularly for teams new to agile and lean. An important part of the
process-decision scaffolding provided by DAD is advice for choosing a life cycle, including
the flowchart of Figure 6.14.

101

Figure 6.14: A flowchart for choosing an initial life cycle.

Of course, there’s a bit more to it than this flowchart. Figure 6.15 overviews what we’ve found
to be important considerations, from the Software Development Context Framework (SDCF)
[SDCF], to be taken into account when selecting a life cycle. Constraining factors we keep in
mind when choosing a delivery life cycle include:

1. Team skills. The two continuous delivery (CD) life cycles require the team to have
a lot of skill and discipline. The other DAD life cycles also require skill and discipline,
although the two CD life cycles stand out. With the traditional life cycle, you can get
away with lower skilled people—due to the handoff-oriented nature of traditional,
you can staff each phase with narrowly skilled specialists. Having said that, we have
seen many traditional teams with very skilled people on them.

2. Team and organization culture. The Agile and Continuous Delivery life cycles
require flexibility within the team and within the parts of the organization that the
team interacts with. Lean strategies can be applied in organizations with a varying
range of flexibility. Traditional can, and often is, applied in very rigid situations.

3. The nature of the problem. The Continuous Delivery life cycles work very well
when you can build and release in very small increments. The other DAD life cycles
work very well in small increments. Traditional is really geared for big releases.

102

4. Business constraints. The key issue here is stakeholder availability and willingness,
although financial/funding flexibility is also critical. The Exploratory life cycle
requires a flexible, customer-oriented, and experimental mindset on the part of
stakeholders. Agile, because it tends to release functionality in terms of complete
features, also requires flexibility in the way that we interact with stakeholders.
Surprisingly, the Continuous Delivery life cycles require less stakeholder flexibility
due to being able to release functionality that is turned off, thereby providing greater
control over when something is released (by simply toggling it on).

Figure 6.15: Selection factors for choosing a life cycle.

The Evolve WoW process goal (Chapter 24) includes a decision point that covers the
trade-offs associated with the six DAD life cycles, plus a few others that are not explicitly
supported by DAD (such as traditional).

Different Life Cycles With Common Milestones

In many of the organizations that we’ve helped to adopt DA, the senior leadership, and often
middle management, are very reluctant at first to allow delivery teams to choose their WoW.
The challenge is that their traditional mindset often tells them that teams need to follow the
same, “repeatable process” so that senior leadership may oversee and guide them. There are
two significant misconceptions with this mindset: First, we can have common governance
across teams without enforcing a common process. A fundamental enabler of this is to adopt
common, risk-based (not artifact-based) milestones across the life cycles. This is exactly what
DAD does, and these common milestones are shown in Figure 6.16. Second, repeatable
outcomes are far more important than repeatable processes. Our stakeholders want us to
spend their IT investment wisely. They want us to produce, and evolve, solutions that meet
their actual needs. They want these solutions quickly. They want solutions that enable them
to compete effectively in the marketplace. These are the types of outcomes that stakeholders
would like to have over and over (e.g., repeatedly), they really aren’t that concerned with the
processes that we follow to do this. For more on effective governance strategies for agile/lean
teams, see the Govern Delivery Team process goal (Chapter 27).

103

Figure 6.16: Common milestones across the life cycles.

Let’s explore DAD’s risk-based
milestones in a bit more detail:

1. Stakeholder Vision. The aim
of the Inception phase is to
spend a short, yet sufficient
amount of time, typically a few
days to a few weeks, to gain
stakeholder agreement that the
initiative makes sense and
should continue into the
Construction phase. By
addressing each of the DAD
Inception goals, the delivery
team will capture traditional
project information related to
initial scope, technology,
schedule, budget, risks, and
other information albeit in as
simple a fashion as possible.
This information is
consolidated and presented to
stakeholders as a vision
statement as described by the
Develop Common Vision
process goal (see Chapter 13).
The format of the vision and
formality of review will vary
according to your situation. A typical practice is to review a short set of slides with
key stakeholders at the end of the Inception phase to ensure that everyone is on the
same page with regard to the project intent and delivery approach.

2. Proven Architecture. Early risk mitigation is a part of any good engineering
discipline. As the Prove Architecture Early process goal (see Chapter 15) indicates,
there are several strategies you may choose to adopt. The most effective of which is
to build an end-to-end skeleton of working code that implements technically risky
business requirements. A key responsibility of DAD’s architecture owner role is to
identify risks during the Inception phase. It is expected that these risks will have been
reduced or eliminated by implementing related functionality somewhere between one
and three iterations into the Construction phase. As a result of applying this approach,

Explicit Phases and Governance Make
Agile More Palatable to Management
Daniel Gagnon has been at the forefront of
agile practice and delivery for almost a decade
in two of Canada’s largest financial institutions.
He had this to say about using DA as an
overarching tool kit: “At both large financials
that I have worked in, I set out to demonstrate
the pragmatic advantages of using DA as a ‘top
of the house’ approach. Process tailoring in
large, complex organizations clearly reveals the
need for a large number of context-specific
implementations of the four (now five) life
cycles, and DA allows for a spectrum of
possibilities that no other framework
accommodates. However, we call this
‘structured freedom’ as all choices are still
governed by DA’s application of Inception,
Construction, and Transition with lightweight,
risk-based milestones. These phases are
familiar to PMOs, which means that we aren’t
carrying out a frontal assault on their fortified
position, but rather introducing governance
change in a lean, iterative, and incremental
fashion.”

104

early iteration reviews/demos often show the ability of the solution to support
nonfunctional requirements in addition to, or instead of, functional requirements. For
this reason, it is important that architecture-savvy stakeholders are given the
opportunity to participate in these milestone reviews.

3. Continued Viability. An optional milestone to include in your release schedule is
related to project viability. At certain times during a project, stakeholders may request
a checkpoint to ensure that the team is working toward the vision agreed to at the
end of Inception. Scheduling these milestones ensures that stakeholders are aware of
key dates wherein they should get together with the team to assess the project status
and agree to changes if necessary. These changes could include anything such as
funding levels, team makeup, scope, risk assessment, or even potentially canceling the
project. There could be several of these milestones on a long-running project.
However, instead of having this milestone review, the real solution is to release into
production more often—actual usage, or lack thereof, will provide a very clear
indication of whether your solution is viable.

4. Sufficient Functionality. While it is worthwhile pursuing a goal of a consumable
solution (what Scrum calls a potentially shippable increment) at the end of each
iteration, it is more common to require a number of iterations of Construction before
the team has implemented enough functionality to deploy. While this is sometimes
referred to as a minimal viable product (MVP), this not technically accurate as
classically an MVP is meant to test the viability of a product rather than an indication
of minimal deployable functionality. The more accurate term to compare to this
milestone would be “minimum feature set” or “minimal marketable release (MMR),”

as Figure 6.11 shows. An MMR
will comprise one or more
minimal marketable features
(MMFs), and an MMF provides
a positive outcome to the end
users of our solution. An
outcome may need to be
implemented via several user
stories. For example, searching
for an item on an ecommerce
system adds no value to an end

user if they cannot also add the found items to their shopping cart. DAD’s sufficient
functionality milestone is reached at the end of the Construction phase when a
MMR is available, plus the cost of transitioning the release to stakeholders is justified.
As an example, while an increment of a consumable solution may be available with
every two-week iteration, it may take several weeks to actually deploy it in a high-
compliance environment, so the cost of deployment may not be justified until a
greater amount of functionality is completed.

5. Production Ready. Once sufficient functionality has been developed and tested,
transition-related activities such as data conversions, final acceptance testing,
production, and support-related documentation normally need to be completed.
Ideally, much of the work has been done continuously during the Construction phase
as part of completing each increment of functionality. At some point, a decision
needs to be made that the solution is ready for production, which is the purpose of
this milestone. The two project-based life cycles include a Transition phase where the
Production Ready milestone is typically implemented as a review. The two continuous

MVPs versus MMRs
Daniel Gagnon provides this advice: Think of
an MVP as something the organization does for
selfish reasons. It’s all about learning, not
about providing the customer with a fully
fledged (or sometimes even vaguely
functioning!) solution. Whereas an MMF is
altruistic—it’s all about the customer’s needs.

105

delivery life cycles, on the other hand, have a fully automated transition/release
activity where this milestone is addressed programmatically—typically the solution
must pass automated regression testing and the automated analysis tools must
determine that the solution is of sufficient quality.

6. Delighted Stakeholders. Governance bodies and other stakeholders obviously like
to know when the initiative is officially over so that they can begin another release or
direct funds elsewhere. The initiative doesn’t end when the solution is deployed. With
projects, there are often closeout activities such as training, deployment tuning,
support handoffs, post-implementation reviews, or even warranty periods before the
solution is considered completed. One of the principles of DA, see Chapter 2, is
Delight Customers, which suggests that “satisfied” customers is setting the bar too
low. The implication is that we need to verify whether we’ve delighted our
stakeholders, typically through collection and analysis of appropriate metrics.

Life Cycles Are Just Starting Points

DAD teams will often evolve from one
life cycle to another. This is because
DAD teams are always striving to
Optimize Flow, to improve their WoW
as they learn through their experiences
and through purposeful
experimentation. Figure 6.17 shows
common evolution paths that we’ve seen
teams go through. The times indicated in
Figure 6.17 reflect our experiences when
teams are supported by Disciplined Agile
(DA) training and Certified Disciplined
Agile Coaches (CDACs)—without this,
expect longer times and most likely
higher total costs, on average. When
helping a traditional team move to a
more effective WoW, a common
approach is to start with the Agile life
cycle. This is a “sink or swim” approach
that experience shows can be very
effective, but it can prove difficult in
cultures that resist change. A second
path shown in this diagram is to start
traditional teams with a Lean Kanban [Anderson] approach wherein the team starts with their
existing WoW and evolves it over time via small changes into the Lean life cycle. While this is
less disruptive, it can result in a much slower rate of improvement since the teams often
continue to work in a silo fashion with Kanban board columns depicting traditional specialties.

Life Cycle Evolution Is a Good Thing
To be clear, we think Scrum is great and it is at
the heart of our two Agile life cycles. However,
we have seen a growing backlash in the agile
community against its prescriptive aspects. As
we describe in our Introduction to Disciplined Agile
Delivery book, in practice, we regularly see
advanced agile/Scrum teams stripping out the
process waste in Scrum, such as daily meetings,
planning, estimating, and retrospectives as they
“lean up.” The Scrum community is quick to
ostracize such behavior as “Scrum … but”—
doing some Scrum but not all of it. However,
we see this a natural evolution as the team
replaces wasteful activities with added value
delivery. The nature of these teams that
naturally collaborate all day, every day means
that they don’t need to perform such
ceremonies on a deferred cadence, preferring
to do these things, when needed, on a JIT basis.
We think this a good and natural thing.

106

Figure 6.17: Common life cycle evolution paths.

What Figure 6.17 doesn’t show is where the Program or Exploratory life cycles fit in. First,
in some ways it does apply to the Program life cycle. You can take an agile program approach
(similar to what scaling frameworks such as Nexus, SAFe, and LeSS do in practice), where the
program releases large increments on a regular cadence (say quarterly). You can also take a
lean program approach, where the subteams stream functionality into production and then at
the program level this is toggled on when it makes sense to do so. Second, the focus of the
diagram is on full-delivery life cycles, whereas the Exploratory life cycle isn’t a full-delivery life
cycle in its own right. It is typically used to test out a hypothesis regarding a potential
marketplace offering, and when the idea has been sufficiently fleshed out and it appears the
product will succeed, then the team shifts into one of the delivery life cycles of Figure 6.17.
In that way, it replaces a good portion of the Inception phase efforts for the team. Another
common scenario is that a team is in the middle of development and realizes that they have a
new idea for a major feature that needs to be better explored before investing serious
development effort into it. So the team will shift into the Exploratory life cycle for as long as
it takes to either flesh out the feature idea or disprove its market viability.

107

In Summary

In this chapter, we explored several key concepts:

 Some teams within your organization will still follow a traditional life cycle—DAD
explicitly recognizes this but does not provide support for this shrinking category of
work.

 DAD provides the scaffolding required for choosing between, and then evolving, six
solution delivery life cycles (SDLCs) based on either agile or lean strategies.

 Project-based life cycles, even agile and lean ones, go through phases.

 Every life cycle has its advantages and disadvantages; each team needs to pick the one
that best reflects their context.

 Common, risk-based milestones enable consistent governance—you don’t need to
force the same process on all of your teams to be able to govern them.

 A team will start with a given life cycle and often evolve away from it as they
continuously improve their WoW.

109

SECTION 2: SUCCESSFULLY INITIATING YOUR TEAM

The aim of Inception is for a team to do just enough work to get themselves organized and
to come to a general agreement around the scope, architectural strategy, and plan for the
current release. The average agile/lean team spends on average 11 work days, so a bit more
than two weeks, in Inception activities [SoftDev18]. This section is organized into the
following chapters:

 Chapter 7: Form Team. Build and evolve an awesome team.

 Chapter 8: Align With Enterprise Direction. Ensure that the team understands and
follows common roadmaps and guidance.

 Chapter 9: Explore Scope. Identify the potential scope for the current release of the
solution.

 Chapter 10: Identify Architecture Strategy. Identify an architecture strategy to guide
the construction of the solution.

 Chapter 11: Plan the Release. Create a sufficient, high-level release plan to guide the
efforts of the team.

 Chapter 12: Develop Test Strategy. Identify a test strategy that reflects the scope,
architectural strategy, and risk faced by the team.

 Chapter 13: Develop Common Vision. Develop a vision for what the team will
accomplish for the current release of the solution.

 Chapter 13: Secure Funding. Obtain funding for the team.

110

7 FORM TEAM

The Form Team process goal, shown in Figure 7.1, provides options for how to build and
eventually evolve our team. There are two reasons why this is important. First, we need people
to get started. Although we expect the team to evolve over time, right now we need at least
enough people to do the work involved with
Inception. Second, we make key decisions early
on. During Inception, we make important
decisions around scope, development strategy,
and schedule among others. These are
decisions that the team should make as they
will be responsible for executing on them.

There are several reasons why this process
goal is important:

1. There is a lot to consider when
you’re building an awesome team.
Awesome teams are comprised of the
right mix of people, with the requisite
skills, with an open and safe culture,
collaborating and learning together,
and enabled to do so by the
organizational ecosystem in which
they work.

2. We need time to build an awesome
team. We need to get started as soon
as we can so that we can start inviting
the right people to join the team as
they become available. The mix of
skills and collaborative style will
evolve as we do so, and people will
come in and out of the team as it
evolves to meet the context of the
situation that it faces.

3. The people on the team, and the
way we work together, will be the primary determinant of success. The first
value of the Agile Manifesto says it best—individuals and interactions over processes
and tools.

Key Points in This Chapter

 You will need to decide whether
your new initiative can be given to
an existing team, to evolve an
existing team, or to create a new
one.

 You will need to appropriately size
the teams and decide what type of
work they are best suited for.

 How whole are your teams and what
is the strategy for accessing skills or
responsibilities not held within the
team?

 You should strive for dedicated
team members, and if not, then
understand the cost of this decision.

 Your teaming strategies will vary
based upon your enterprise realities
such as outsourcing, distribution,
and time zones.

 You should consider strategies for
adequate training, mentoring,
coaching, and obtaining access to
stakeholders.

 Who is responsible for evolving the
team, and how will they do so?

111

Figure 7.1: The goal diagram for Form Team.

112

To form, and later evolve, our team we need to consider several important questions:

 Where will team members come from?

 How do we intend to evolve the team over time?

 How large should the team be?

 How will subteams be organized (if we need them)?

 What type of team members do we need?

 How complete will the team be?

 How long will the team exist?

 Where will team members be located?

 What organization(s) do the team members work for?

 What range of time zones are team members found in?

 How will we support the team?

 How available will team members be?

Source of Team Members

We need to determine how to source our team members. Is work taken to an existing team,
or are team members selected for the work? This decision is one of the most important of all
our organizational decisions. Using existing product teams is an important and fundamental
step toward optimizing agility. Stable, long-term, small, colocated, dedicated teams should be
our goal if we expect our teams to grow into high-performance delivery machines, or “race
car engines” in our racing car metaphor [RaceCar].

Options (Ordered) Trade-Offs

Existing product team.
Work is performed by an
existing team that has
worked on this previously
and understands the
domain.

 The team understands the product domain and how to
navigate the organization, making it more effective.

 The team has an established velocity, which makes
forecasting more accurate.

 The team has likely gelled and works well together.

 Long-standing teams may make some team members feel
trapped in their current role, necessitating opportunities to
transfer between teams (people management).

Existing team from another
product. The team has
worked together for some
time, but on another
product and perhaps even
another domain.

 The team will likely perform better than a new team since
they have a history of working together.

 Not having worked in a new domain introduces a risk of
miscommunication between the stakeholders and the
delivery team.

 The team may need to evolve to meet the demands of
taking on new types of work.

New. The team has been
assembled for this initiative
and may have not worked
together before. This is a
traditional matrix-style of
forming teams using a
“project” approach rather
than a release/product
approach.

 The team will take some time to “form, storm, norm, and
perform” resulting in having to work through trust issues,
awkward collaboration, miscommunication, and often
poor productivity and quality.

 Inconsistent, but hopefully rising, velocity will be an initial
characteristic of a new team.

 This is the least effective choice as the effort to grow a
high-performance team is expensive and time-consuming.

113

Team Evolution Strategy

Team turnover, even within “stable teams,” will still occur over time. However, changing team
members can be disruptive and can jeopardize our existing team dynamics.

Options (Ordered) Trade-Offs

Team evolves itself. A
manager may help to select
candidates for a team, but the
team has the opportunity to
make the final selection of who
joins the team.

 Teams are motivated to identify people who are the
best fit.

 Teams are more likely to welcome new team members
when they have a part in selecting them.

 May be challenging to get team consensus.

 Teams have to take time out for interviewing and
selection.

Team lead makes changes. A
manager might help with
shortlisting, but the team lead
makes the final selection.

 Works in an environment where the team trusts the
team lead to make a good selection.

 However, team dynamics are as important as domain
knowledge, so the team should still have the
opportunity to vet candidates.

Management makes changes.
A manager allocates or assigns
“resources” to the team.

 Management is unlikely to appreciate the existing team
dynamics.

 Management may be motivated to place someone who
is currently available rather than someone who is the
best fit for the role.

Size of Team

The ideal situation is having small teams in a colocated work room. Mark likes to say, “I should
be able to have conversations with any team member without leaving my seat.” However, we
have also seen larger teams be quite successful despite “two-pizza strategies” or insistence on
teams no larger than 7 +/- 2 people. Half of agile teams are 10 or more people in practice.
Having said that, team success rates drop the larger the team becomes. It’s important to note
that the size options in the following table purposefully overlap one another because there are
no commonly accepted definitions for team size.

Options (Ordered) Trade-Offs

Small team (2–15
people). A single team of
people. See Figure 7.2 for
a common organization
structure.

 Small teams are most effective for collaboration.

 May be more difficult to establish “whole teams” who have
all the skills and authority to do the work required.

 Small teams are likely to have dependencies on external
teams to do work for them, requiring handoffs that result in
delays.

Medium team (10–30
people). A single team of
people. See Figure 7.3 for
a common organization
structure.

 Slightly larger teams allow specialists such as UX designers,
database, and other technical or business specialists to join
the team and still have enough work to be fully utilized.

 Increased likelihood that the team can be a whole team.

 Teams of this size are viable in practice, particularly when
team members are near-located, the team is allowed to grow
into this size, and the team is following a lean life cycle.

114

Options (Ordered) Trade-Offs
Medium team of teams
(10–50 people). The
medium-sized team is
organized into a
collection of small
subteams. See Figure 7.4
for a common
organization structure.

 Each subteam should be whole, thereby gaining the benefits
of small teams.

 Sometimes individuals will be members of several subteams.
This adds scheduling complexity and risk to the subteams,
and stress for the individuals.

 Coordination is required between subteams, adding risk and
overhead. Coordination can typically be accomplished via a
“Scrum of Scrums (SoS),” which is a second daily
coordination meeting comprised of a representative from
each subteam.

Large team of teams (30+
people). The “large team”
is organized into a
collection of small
subteams. See Figure 7.5
for a common
organization structure.

 Typically requires more complex collaboration mechanisms
than an SoS, in particular for requirements management,
team management, and technical management. See the
Coordinate Activities process goal in Chapter 23.

Figure 7.2: Potential organization of a small DAD team.

115

Figure 7.3: Potential organization of a medium-sized DAD team.

Figure 7.4: Potential organization of a medium-sized team of teams.

116

Figure 7.5: Potential organization of a large team of teams.

117

Structure of Team

We will need to decide if each of our teams builds pieces of the solution end to end or whether
we rely on other teams to complete our work.

Options (Ordered) Trade-Offs

Single team. One
“whole” team, where the
team has all the skills
required to get the job
done, makes for the most
effective team makeup.

 This greatly reduces, and sometimes eliminates,
dependencies outside the team, which could inhibit the
team’s ability to delivery reliably.

 Can be difficult to form a whole team, particularly in
organizations where many staff members are still highly
specialized.

Component teams. The
team provides a
component or part of the
solution, which is
consumed by other teams
or solutions. Also known
as a services team.

 Useful where there is a need to govern aspects of the
solution, such as a security framework, so that they are
appropriately designed and supported.

 Can be efficient where there is a high degree of
specialization involved.

 Can result in bottlenecks and inefficient resourcing when
other teams are dependent on the work of these teams.

Feature teams. These
whole teams are
responsible for creating all
aspects of each feature
from top to bottom.

 Ideal in that the teams are not dependent on individuals or
other teams in order to deliver each part/feature of the
solution.

 Can result in organizational technical debt if each team is
“doing their own thing.”

 Can be inefficient if teams are not experts in some technical
areas.

 There is a temptation to build everything from scratch if
teams are not expected to consume services created by
component teams. Hopefully our architecture owner will
help to guide the team to work in an enterprise-aware
manner and avoid this mistake.

Internal open source. A
component/framework is
developed using an open
source strategy within our
organization (e.g., on our
side of the firewall).

 Can be an effective way to encourage collective ownership
of all organizational assets, not just within a team. This
reduces business risk of some aspects of the solutions being
poorly understood and supported.

 Encourages reuse.

 Requires expertise with open source development.

 Very rare in practice; typically only applicable in large
organizations with many teams working on a common
platform.

118

Member Skills

Do our team members each have specific skills and can only work within their specialty or are
they capable and comfortable with collaborating on work outside their specialty?

Options (Ordered) Trade-Offs

Generalizing specialists. A
generalizing specialist is skilled
and experienced in one or more
areas and also has general skills
in other areas outside their
specialty (e.g., a developer
specialist who also can help with
testing and analysis). Also known
as “T-skilled,” “E-skilled,”
“comb-shaped,” or cross-
functional people [GenSpec].

 Being able to contribute in areas outside of one’s
specialty means that the team is more effective overall.

 A lower likelihood that work is delayed due to
bottlenecks waiting for a skilled team member to
complete work.

 Requires people with a more robust set of skills.

Specialists. Individuals who are
skilled only in one specialty
such as testing, programming,
or analysis.

 Effective when there is little need to collaborate with
others to complete work (e.g., we don’t need to be
agile).

 When work has to be completed by multiple
specialized team members, the overall process tends to
be slow and expensive, producing lower levels of
quality.

Generalists. The person has
general skills across disciplines
but no expertise in any one.

 Generalists have the potential to be leaders or
managers because they can often see the bigger picture.

 A team made up solely of generalists is rarely able to
produce a working solution due to lack of concrete
skills.

Team Completeness

We should try to create a team that is complete in that it has all the skills, experience, and
authority to get the job done. As you can see in the table below, there are several options for
doing so. To determine whether a team has sufficient skills, a strategy that we’ve found effective
is to first identify which process goals the team is responsible for addressing and then using the
goal diagrams to assess whether the team has sufficient skills to address each goal.

Options (Ordered) Trade-Offs

Whole team. A team that has
all the skills required to
complete the work. A whole
team is responsible for
addressing all of the process
goals applicable to the life cycle
that they are following.

 Ideal in that the team is not dependent on others to get
the work done. Dependencies create risk that the
dependent work is not completed in a timely manner,
and that its quality may jeopardize the team’s own work.

 For a team to be whole, we may need to build a team
that is larger than we had hoped (often breaking the
“two-pizza” rule—a team should be small enough to
be fed with two pizzas). In organizations where people
are still mostly specialized, we will have larger “whole
teams” compared with organizations where people are
generalizing specialists with a more robust set of skills.

119

Options (Ordered) Trade-Offs
Specialized team. A team that is
skilled in producing a particular
type of work, such as a data
group or a testing team. A
specialized team is responsible
for addressing the subset of
process goals, and often a
subset of the decision points of
some goals, applicable to their
specialty. For example, a testing
team would be responsible for
addressing Develop Test
Strategy (Chapter 12) and a
portion of Accelerate Value
Delivery (Chapter 19).

 Useful in situations where the work is highly
specialized. Four percent of agile/lean teams are
specialized “services” teams [SoftDev18].

 Results in dependencies across teams, which is
inefficient, requires coordination, and increases
delivery risk.

Ad hoc. Teams are formed of
people who may work well
together but who may not have
sufficient skills to complete the
work.

 Less efficient than other approaches because of a lack
of cohesion.

 Teams who work well together can make up, in part,
for the lack of a cohesive set of skills and get the work
done.

120

Team Longevity

This is one of the key decisions when building a team. Teams that stay together long term are
most likely to gel and become high-performing teams.

Options (Ordered) Trade-Offs

Stable (product) team. The
team stays together long term
between releases with periodic
rotation of team members for
growth opportunities and
knowledge sharing. Also called a
long-lived team.

 Stable teams are more likely to be trusting and highly
collaborative. Fifty-four percent of agile/lean teams
are stable/long-lived teams [SoftDev18].

 Avoids the tangible and substantial cost of
disbanding teams. The forming, storming, norming,
and performing journey for teams is expensive and
time-consuming.

Project team. Team is
“resourced” and formed in classic
project style, specifically for a
new initiative.

 Team productivity and quality is initially poor until
the team gels. Forty-two percent of agile/lean teams
are project teams [SoftDev18].

 Potential for significant waste until the team
optimizes a process that works for them.

Ad hoc. A group of people
delivering work without well-
defined boundaries.

 Lack of commitment to the overall initiative that we
should find in a team.

 May be effective for ad hoc work.

Geographic Distribution

The most effective method of communication is face-to-face discussion around a shared
sketching environment, as you can see in Figure 7.6. The more geographic distance between
people, the less able they are to adopt the most effective communication strategies, which
increases the risk of misunderstandings among team members. Similarly, organization
distribution and time zone distribution of team members, described below, may affect our
ability to choose communication strategies.

Figure 7.6: Comparing communication strategies between people.

121

The reality in most organizations is that colocated teams are the exception rather than the rule
due to flexible, work-at-home policies and organizational distribution. We have several
options for geographic distribution of the team, compared in the following table, which may
be combined within a single team. When it’s possible for team members to easily come
together—perhaps dispersed members are within 1–2 hours driving distance—then they
should come in periodically to work face to face with the rest of the team. A common strategy
that we’ve seen is to have certain days be “office days,” when everyone comes into the office
to work together. The number of office days per week required to be effective will vary by
team depending on how well the team has gelled and the team’s ability to collaborate remotely.
We suggest that you start by experimenting with allowing one day of remote work a week to
see how that works, then adjust based on your experiences.

Options (Ordered) Trade-Offs

Colocated. Team
works in a common
area.

 Most effective for collaboration.

 The cost of creating a common work area for each team can
be a barrier in many established organizations.

 There is a fear, at least initially, that the work area will be too
noisy and will not allow people to focus.

 If teams are expected to evolve in size, there will be a need for
a flexible, movable wall/barrier strategy.

Partially dispersed
members. Some team
members work
remotely from home or
from another location.

 Less collaborative than being colocated, but allows remote
workers to focus on their work.

 Requires virtual tooling such as group chat, digital task boards,
virtual whiteboards, and videoconferencing.

Distributed
subteams—whole
team. Complete
subteams where people
are in two or more
locations. Each
subteam is whole, with
sufficient skills to
produce their portion
of the working solution.

 Increases our ability to hire talented people given a larger
candidate pool.

 Difficult to coordinate work across team boundaries, but when
the teams are whole the coordination required between teams
is minimized.

 Made worse if there are time zone differences between teams.
Try to source distributed teams in the same general time zone.
The process goal Coordinate Activities (Chapter 23) provides
some strategies for subteam collaboration.

Distributed
subteams—by
function.
Subteams/squads
where people are in two
or more locations. One
or more of the
subteams is organized
by job function (e.g., a
team is responsible just
for testing, another just
for requirements
elicitation, and so on).

 Increases our ability to hire talented people given a larger
candidate pool.

 Very difficult to coordinate work across team boundaries
because there will be significant coordination required between
the teams. This coordination is often accomplished via detailed
documentation or other forms of electronic communication.

 Coordination is made worse if there are time zone differences
between teams. Try to source distributed teams in the same
general time zone. The process goal Coordinate Activities
(Chapter 23) provides some strategies for subteam
collaboration.

122

Options (Ordered) Trade-Offs
Fully dispersed
members. Everyone
works from a unique
location.

 Virtual tooling is critical for effective collaboration.

 More difficult for the team to bond when not working together
daily.

 Consider bringing the team together periodically to work
through critical decisions and to bond. This is particularly
crucial when the team is first formed.

Organization Distribution

Sometimes people from several organizations, or several areas within the same organization,
may be part of the team. As you see in the table below, there are several organization
distribution strategies that may be combined. Because the organizations involved may be in
different locations, this decision point may be correlated to both geographic distribution and
time zone distribution.

Options (Ordered) Trade-Offs

Single-division full-time
employees (FTEs). All
of the people from the
organization come from
the same division or line
of business (LOB).

 Simplifies people management issues because everyone is in
the same reporting structure.

 The priorities and cultures of other divisions may not be well
represented, leading to decisions that are not truly enterprise
aware.

Multiple-division
FTEs. People may
come from several
divisions/LOBs of the
organization.

 Greater chance of working in an enterprise-aware manner.

 Often motivates creation of geographically distributed teams.

 Often motivates addition of people to the team simply because
they’re from a certain group instead of being the best fit for
their position.

 Organizational politics and different organizational styles may
hamper the team’s ability to work together.

123

Options (Ordered) Trade-Offs
Consultants. These are
typically experts in a
certain specialty who
join the team for a short
period of time.
Consultants typically
come from external
organizations, although
some may come from
internal specialty groups
such as data
management, reuse
engineering, or a center
of excellence (CoE).

 Great way to bring expertise into the team, particularly when
members are tasked with sharing their skills and knowledge
with others.

 Consultants tend to have greater motivation to learn and be
effective in their role.

 Can motivate some FTEs to leave the organization to become
consultants themselves.

 Consultants and contractors often downplay long-term
decisions around technical debt and sustainability because they
won’t be around to deal with the impact of these decisions.

 The organization may not be willing to pay for contractors or
consultants to receive training or coaching, which can impact
the ability to bring new knowledge and skills into the team. The
organization may need to find a way where the
contractors/consultants share the cost of the training (perhaps
they aren’t paid to be in the training with the rest of the team).

 Regulations or policies may prevent the team from treating
external consultants and contractors as full team members
(e.g., they can’t be invited to team celebrations).

 Regulations or policies may limit the amount of time that
external consultants and contractors are allowed to work for
the organization.

Contractors. These
people are provided by
an external service
provider to augment the
organization’s staffing
for a long period of
time, usually for several
months or years.

 Great way to bring expertise into the team, particularly when
they are tasked with sharing their skills and knowledge with
others.

 Great way to address short-term staffing shortages, particularly
when there is a clear plan to hire and train FTEs to replace the
contractors.

 See the concerns described for consultants around
training/coaching, short-term thinking, and regulatory
challenges.

Outsourcers. Some of
the work, perhaps most
of it, is performed by
people external to the
organization, many of
whom will be off-site
(and very likely paid
lower wages).

 Outsourcers are motivated very differently than the
organization. They want to maximize their profits and will act
accordingly.

 Outsourcers are often required to work (by the organization)
under a project-based approach, thereby injecting all the
associated risks and overhead of projects (see Chapter 6 for a
discussion).

 Outsourcers are often not as motivated by long-term concerns
as they should be, particularly when there is the potential for
follow-on work to fix any problems after the current project is
completed.

 Requires the management team to adopt agile contracting and
contract governance practices (issues for the Procurement
process blade [AmblerLines2017]); two areas which the
organization is unlikely to be adept at and unlikely to even
realize they need to be adept at.

124

Time Zone Distribution

Time zone differences, or more accurately differences in the common ranges of work hours
for people at different locations, can reduce our ability to communicate effectively (see Figure
7.6). As you can see in the following table, there are several options available, the options
becoming less effective as the overlap in working hours shrinks. Some people will choose to
shift their working hours to compensate, putting potential stress on them and their families.
Our advice is to share the “time zone pain” across locations and have everyone shift their
working hours at some point, often rotating through locations. Geographic distribution and
time zone distribution are often closely correlated, in particular when the geographic
distribution is longitudinal rather than latitudinal. Having said that, latitude differences can
cause time zone differences because of differences in how daylight savings times work (e.g.,
depending on the time of year, Toronto, Canada is either one, two, or three hours in time
zone difference compared with Sao Paulo, Brasil, even though Toronto is almost due north
of Sao Paulo).

Options (Ordered) Trade-Offs

Same time zone.
Everyone works
within the same time
zone, although not
necessarily the same
location.

 The team is able to apply the more effective communication
techniques.

 Very easy to schedule virtual working sessions and
coordination meetings with people in different locations.

 Even if the team is not near-located, it may be fairly easy for
people to get together face to face as they may be within
driving distance of each other.

Multiple time zones—
five or more hours of
overlap.

 Reasonably easy, although restricted ability to schedule
virtual working sessions and coordination meetings.

 Greater need for less effective communication strategies,
such as email and documentation, during nonoverlapping
work periods.

Multiple time zones—
less than five hours of
overlap.

 Offers the potential for the organization to staff the team
from a wide range of locations.

 The team will benefit from a wider range of views and
cultures.

 Opportunity to take a “follow the sun” approach to
development, where teams in different time zones hand off
to one another, potentially achieving a 24-hour
development day across locations.

 The team is forced to apply mostly ineffective
communication strategies, thereby increasing cost and the
risk of lower quality due to misunderstandings.

 Team morale is likely to be lower with lower motivation for
individuals to contribute to the team.

Multiple time zones—
no overlap.

 Very similar to multiple time zones with less than five hours
of overlap, but more extreme.

125

Support the Team

How will our organization enable the team to work effectively, to learn and to improve over
time?

Options (Not Ordered) Trade-Offs

Coaching. Accelerates
learning about agile and lean
ways of working. Coaching
also helps teams to
understand how to work
effectively together [Adkins].

 Good coaching is like “success assurance” so that our
early critical agile pilots are successful.

 Typically requires a minimum three-month
investment to reap the benefits.

 Good coaches can simultaneously coach multiple
teams.

 Can be difficult to find good, experienced coaches
among the multitudes claiming to be agile coaches.

Training. Getting all
stakeholders (both IT and
business) on the same page is
an important first step of an
agile transformation.

 Typically 2–4 days of Disciplined Agile training are
required initially, with additional specialized training
(such as product ownership or test-driven
development) to follow as needed.

 Most Scrum training is inadequate for enterprise-class
situations as it tends to gloss over the Inception and
Transition portions of the life cycle, and all but
ignores technical topics such as architecture, testing,
and development.

Mentoring. One-on-one
guidance to help transfer
knowledge to all team
members.

 Best done for all stakeholders such as executives,
managers, and team members.

 Both business and IT should receive mentoring.

 The most expensive but valuable team support
option.

 Requires that the mentor has a deep understanding of
Disciplined Agile and years of experience in many
contexts.

Stakeholder access. Access
to stakeholders is necessary
to ensure that the team
receives timely information
and feedback.

 Stakeholders will need to be educated on the
importance of sharing all relevant information and the
impact of their decisions.

126

Availability of Team Members

We will need to determine the availability of each team member to the team. A critical
consideration is whether our aim is for our team to be productive, or whether our aim is to
ensure that everyone is fully utilized (possibly through assigning them to multiple teams)—
people need slack to have time to reflect, learn, and improve [Demarco].

Options (Ordered) Trade-Offs

Dedicated. The team member is
dedicated to working only on this
team.

 Very important for agile teams so that they can
focus on meeting their commitments.

 There is no hidden work when everyone is
dedicated because stakeholders know what all
team members are working on.

Ongoing part-time. The team
member is a part of multiple
teams.

 Context switching between teams has a tangible
cost.

 Difficult for the team to make commitments.

 Waste is incurred for team members who need to
attend multiple coordination and other meetings.

 When someone is working on work items from
multiple teams, then the team does not have good
visibility into what they are working on.

As needed/available. The person
is brought into the team on an as-
needed basis.

 Common with highly specialized people who are
required by multiple teams.

 Difficult to plan for because availability of the
person can be hard to predict.

 Disruptive to the team, resulting in long, drawn-
out efforts.

127

8 ALIGN WITH ENTERPRISE DIRECTION

The Align With Enterprise Direction process goal, summarized in Figure 8.1, provides options
to help our team ensure that what we’re about to do reflects the overall strategy of our
organization. There are two reasons why this is
important:

1. Ensure we’re doing the right thing.
We want to understand both the
technical and business strategies that
are relevant to our situation. We also
want to follow appropriate
conventions and controls to
streamline our interactions with others
in the organization. In other words, we
want to work in an “enterprise-aware”
manner.

2. Ensure we’re taking advantage of
everything available to us. We want to identify existing assets that we can leverage,
thereby enabling the team to focus on adding new value.

Figure 8.1: The goal diagram for Align With Enterprise Direction.

Key Points in This Chapter

 We can increase quality, consistency,
and speed up our delivery by
adopting common guidelines and
templates, and taking advantage of
reuse opportunities.

 We should understand our
enterprise governance strategies and
look for opportunities to help
leadership to understand and
support lean governance strategies.

128

As you can see in the Align With Enterprise Vision goal diagram, we need to address several
important questions:

 What is our overall organizational direction?

 What are the standards and guidelines we should follow?

 What templates should we adopt?

 How will we go about reusing existing enterprise assets?

 What governance strategies will we need to work under?

Align With Roadmaps

Mature organizations will have strategies in place, often captured by roadmaps or high-level
plans, that capture their vision for where they are headed. These potential roadmaps, several
of which are described in the following table, will often describe both what your organization
hopes to do as well as what it hopes to not do. Effective roadmaps take a rolling-wave
approach, with detailed information describing the vision for the near future with less and less
detail for portions of the future that are further in the future. These roadmaps are continuously
updated by the leadership teams responsible for them.

Options (Not Ordered) Trade-Offs

Business roadmap. This
roadmap captures the
organizational vision for
what lines of business, or
value streams, it intends to
be in and which ones it
intends to reduce or exit.

 Provides guardrails for business architecture decisions.

 Critical input for anyone, such as product owners,
making scoping or prioritization decisions.

 Contains strategic information that senior leadership
does not want to share with the competition and may
not want to share with all staff.

Staffing roadmap. This
roadmap captures the
staffing needs for the
organization, often
indicating the split between
employees and contractors,
the desired staffing levels
for certain skill sets, and
staffing by geography.

 Provides guardrails for staffing decisions.

 Critical input for anyone making people management
decisions [AmblerLines2017].

 Staffing roadmaps need to be fluid because the staffing
needs for a team will vary depending on the needs of
the market.

 Contains strategic information that senior leadership
does not want to share with service providers and may
not want to share with all staff.

Technology roadmap.
Captures the organizational
vision for your technology
infrastructure, including the
desired technologies to
move toward, the
technologies to move away
from, and potential new
technologies that still need
to be experimented with
[AmblerLines2017].

 Provides guardrails for technical decisions.

 Critical input for anyone making or guiding
architecture and design decisions.

 Some team members may feel overly constrained by an
enterprise technology roadmap. This is an indication
that our team needs to work closely with the enterprise
architects, who are typically responsible for this
roadmap, to understand and evolve it where
appropriate.

 Contains strategic information that your organization
does not want to share with technology vendors.

129

Adopt Common Guidelines

Guidelines are more likely to be followed when they’re practical, concise, and developed
collaboratively with the people meant to follow them. As you can see in the following table,
there are many potential categories of guidelines applicable to delivery teams. Following these
guidelines appropriately is an important aspect of our overall governance efforts.

Options (Not Ordered) Trade-Offs

Architecture. Explains the
“to-be” architectural vision
for the organization,
recommended architectural
styles, and
recommendations for
solution adaptiveness. Also
indicates the technologies
that are considered
acceptable to work with, the
technologies and systems
slated for retirement, and
potentially an indication of
upcoming technologies that
may be available for teams
to experiment with.

 Increases the chance that teams follow a common
architectural strategy, thereby reducing technical debt and
increasing reuse.

 The architectural vision needs to evolve as our
organizational needs evolve and as technology options
evolve.

Branding. Captures
important marketing
decisions around the usage
of color, words/phrases,
and our corporate logo.

 Increases the chance that teams will develop solutions
with a common look and feel.

 Tendency to make these guidelines overly formal.

Coding. Describes
programming conventions
for a given language.

 Promotes consistent coding style and conventions within
and across teams, increasing overall quality.

 Less experienced developers will often chafe at having to
follow coding conventions.

Data. Describes naming
and design conventions for
our data sources as well as
recommended technologies.
May also list recommended
sources of data and data
sources slated for
retirement.

 Increases the consistency across data sources, thereby
increasing overall quality.

 Many existing data professionals will chafe at the idea of
delivery teams being allowed to do data work, even if they
are following guidelines.

 Many developers lack a sufficient background in data to
appreciate the need for data guidelines.

Documentation.
Potentially indicates writing
style guidelines,
dictionary/language
options, internationalization
requirements, tool choices,
and available templates.

 Increases consistency of documents, improving their
readability and maintainability.

 Following common guidelines is critical for deliverable
documentation to increase its consumability by your
stakeholders.

 Many “agilists” are antidocumentation and unwilling to
invest the time to understand documentation
conventions.

130

Options (Not Ordered) Trade-Offs

Risk management.
Describes the organizational
approach to how risks are
addressed at various
organizational levels. Often
includes a checklist of
common potential risks to
be considered by teams.

 Increases the consistency of how risks are identified,
classified, and reported.

 Tendency to make these guidelines overly formal or overly
detailed, particularly in regulatory environments.

Security. Overviews
conventions around data
privacy, encryption, security
tooling, authentication,
confidentiality, and more.
Also called InfoSec
guidelines.

 Increases the chance that teams will build secure solutions.

 Delivery teams will still need help from experienced
security engineers, particularly in complex situations.

 Security guidelines need to evolve regularly to reflect the
changing nature of security threats to our organization.

Tool. Describes strategies
for accomplishing common
tasks with a given tool.

 Increases the chance that tools are used appropriately.

 Consistent tool-usage patterns enable pairing and other
nonsolo collaboration strategies.

 Potential to miss, misuse, or underuse some tool features.

User interface (UI).
Describes conventions
around report layout, screen
layout, color application,
supported platforms,
selected UI frameworks, and
other UI-related issues.

 Increases the likelihood that teams will develop UIs with
a consistent look and feel, thereby improving the end-user
experience.

 Strict adherence to UI guidelines can prevent
opportunities for building creative solutions.

Adopt Common Templates

Templates can be an accelerator for teams in that they don’t have to figure everything out
from scratch. However, templates shouldn’t overly constrain teams from doing what makes
sense in their given context. In many situations, particularly when regulatory compliance is an
issue or when our team is part of a larger program, we will find that adopting some templates
is a firm requirement. Furthermore, our organization is likely to have a different set of
templates for traditional teams than for agile teams, albeit with some overlap (in particular,
documents for operating and supporting our solution).

131

Options (Ordered) Trade-Offs

Minimal. Simple
templates that address
the common 80 % of
what teams need to
capture.

 A good balance between the freedom of the teams to do what
makes sense for them and the need for consistent
documentation.

 Documents across teams will vary, reflecting the fact that each
team needs to capture some information unique to them.

Comprehensive.
Heavyweight
templates that address
everything that a team
may encounter, or
that have been
encountered in the
past by teams.

 May make sense where standard approaches across multiple
teams is desired and artifacts from these teams are reviewed by
a common stakeholder.

 Many of the sections in the template won’t apply to a team’s
unique situation, resulting in members having to indicate that it’s
not applicable or, worse yet, filling in low-value information to
cater to reviewers.

None. A template is
not available for the
type of document we
need to create.

 Simple or unique situations will not benefit from templates.

 When the type of documentation is needed by multiple teams
but a template doesn’t exist, the team should invest the time to
develop one so that it can be reused by others.

Reuse Existing Infrastructure

There are many assets that can potentially be leveraged by a team. Increased reuse within our
organization results in higher quality assets, higher productivity, lower maintenance costs, and
quicker development times. Some organizations will have a reuse engineering team that works
with delivery teams, or a reuse repository in which reusable assets are stored [Reuse].

Options (Ordered) Trade-Offs

Domain components
(microservices, etc.). An
independently deployable set
of functionality, with a well-
defined interface, that
addresses a cohesive business
or technical goal.

 Organizes common, reusable functionality into
evolvable, loosely coupled components.

 A proven architectural approach from the 1990s (e.g.,
CORBA), with microservices being the latest
technological incarnation.

 Requires significant investment in initial architectural
modeling, then continued adherence to following and
evolving the architectural strategy.

 Without enterprise-level architectural guidance, this
strategy often results in a morass of disparate
technologies, particularly in the case of microservices.

Web services. A web service is
a loosely coupled, highly
cohesive function that is
accessed via web-based
protocols.

 Extends reusable functionality to a wide range of
consumers by wrapping disparate, underlying
technologies via cross-platform web protocols.

 The web protocols used inject significant overhead,
particularly around data transport.

Tooling. Tools, and the
support thereof, can be reused
across teams.

 Potential to reduce licensing costs.

 Enables our organization to focus on maintaining and
supporting a reasonable number of tools.

 Restricting tools too tightly results in (highly paid)
professionals working in less effective ways due to not
having access to appropriate tooling.

132

Options (Ordered) Trade-Offs

Applications/systems. The
functionality within
applications/systems can be
reused, particularly when a
defined application
programming interface (API)
to do so, and better yet a
service-level agreement (SLA),
is available.

 It’s very difficult to “wrap access” to a legacy application
because they are rarely architected with this in mind, and
as a result the functionality it could potentially provide
has too many side effects due to high coupling with
other functionalities.

Frameworks. Frameworks for
user interface (UI)
development, security, logging,
and many other purposes are
commonly available.

 Easy way to reuse important and often specialized
functionality.

 Frameworks often offer far more functionality than
what we need, adding to our solution’s overall footprint.

 Similar frameworks are often difficult to use together.

 Often language or platform specific.

Data sources. Production
data sources—including
databases, data files, test data,
configuration files, and more—
can and should be reused
wherever possible.

 Reusing existing data can avoid significant development
overhead and the creation of additional technical debt
(in this case around duplicated data) within our
organization.

 Production data sources are often used as a source of
test data, but we may need to cleanse/obfuscate the data
for privacy reasons (see Develop Test Strategy in
Chapter 12).

 Owners of existing data sources can often be difficult to
work with (they likely don’t have the resources required
to help other teams), documentation can be out of date
or nonexistent, and the data semantics of the data source
will vary from what we need.

Components. Small-scale
components, in particular UI
widgets, can be easily reused by
developers.

 Easy to understand and apply due to being small and
cohesive.

 Components are often platform dependent. For UI
components, we typically need to adopt a single library
or framework to achieve a common look and feel.

Code. Copying, and often
modifying, source code is a
form of reuse.

 Quick way to get some code written initially.

 Very difficult to consistently update common logic
when the code has been copied many times.

Align With Governance Strategies

While “governance” is often thought of as a dirty word by agilists, the reality is that our team
will be governed. For instance, sharing our status is a type of governance, and in the agile
world we share status using techniques such as daily coordination meetings (verbally) and task
boards (visually). Reporting on progress is also part of governance and one way we do this in
an agile fashion is through regular demonstrations of new functionality. Standards and
guidelines, which every responsible enterprise has, are also part of governance.

Effective governance is based on motivation and enablement, not on command and
control, and we believe that you should be governed effectively [ITGovernance]. As you see
in the following table, there are various aspects to governing IT delivery teams to be aware of.

133

The groups that are involved with governance should push as much skill, knowledge,
responsibility, and automation into delivery teams as they can. This puts them in a position
where they can focus on assisting delivery teams to address any difficult challenges that they
run into. For more about agile/lean governance, see the Govern Delivery Team process goal
(Chapter 27).

Options (Not Ordered) Trade-Offs

Control. How does our
organization monitor and guide IT
delivery teams? What milestones
are teams expected to fulfill (and
how do they do so)?

 Improves the chance that delivery teams are aligned
with organizational goals.

 We may need to work closely with our “control tribe”
to help them rework their approach, as many existing
control strategies are documentation-based “quality
gate” reviews, not the straightforward, risk-based
approach promoted by DA.

Data. What data quality and
availability goals are to be met?
How will data management
support the rest of the
organization?

 Helps delivery teams increase the quality of the data
being produced and decrease organizational technical
debt within existing data sources.

 We may need to work closely with our data
management team to help it adopt more collaborative
and evolutionary strategies.

Enterprise architecture. How
will the enterprise architecture
(EA) team collaborate with and
guide IT delivery teams? How will
it collaborate with and guide the
business?

 Increases the chance that delivery teams will build
solutions that leverage and integrate well into the
existing IT ecosystem.

 The enterprise architects need to get ahead of the
delivery teams, and then support them in a
collaborative and evolutionary manner.

 Team members often need to be coached by their
architecture owner to appreciate and leverage EA
guidance.

Financial. How will finance
allocate and monitor funds? What
reporting needs, perhaps around
CAPEX/OPEX, do they need?

 Increases the chance that the organization will focus
on spending their IT investment wisely as opposed to
ensuring they come in on (an often artificial) budget.

 Increases the chance that delivery teams will
streamline their strategy to secure funding and any
needed reporting for CAPEX/OPEX tracking.

 Finance may not realize the impact that misaligned
finance strategies, such as fixed-price projects, have
on team behavior.

Quality. How should quality
conventions be met by
development teams? What
monitoring/reporting
requirements must be met? What
tooling exists to do so?

 Increases the chance that the team leverages existing
testing assets and processes.

 Potential to hamper agile teams when the existing
quality team has not yet adopted modern agile
strategies, including automated regression testing and
continuous integration (CI).

134

Options (Not Ordered) Trade-Offs
People management. What are
our organization’s strategies
around “human resource” (HR)
matters, such as training,
education, compensation, roles and
responsibilities, legal constraints,
and conflict resolution (to name a
few).

 Streamlines how teams evolve and how our
organization helps people grow their skills.

 Educates teams on legal regulations around how they
evolve their team and treat each other, and when to
get assistance from our people management team.

Release management. What are
our organization’s strategies and
tooling for deploying solutions into
production? What are the potential
release windows and blackout
periods? What continuous
integration (CI)/continuous
deployment (CD) tooling and
support exists?

 Decreases the chance that collisions will occur when
releasing into production.

 Enables teams to adopt CI/CD and other
release/deployment practices effectively.

 Potential to reinforce existing, more traditional
release practices that tend to be slow and costly.

Security. How will our
organization ensure that our staff,
systems, and assets are
trustworthy? How will our
organization ensure the safety of
such?

 Increases the chance that delivery teams will work
with security staff when appropriate throughout the
life cycle to ensure their solutions are secure.

135

9 EXPLORE SCOPE

The Explore Scope process goal, shown in Figure 9.1, provides options to elicit and capture
the initial requirements for our solution. Very often, an initial vision will have been developed
by our product management team (if we have
one) and prioritized and initially funded by our
portfolio management team (if we have one).
The point is that there may already have been
some initial thinking about the scope of our
initiative. There are several reasons why we
need explore the initial scope in a bit more
detail:

1. We need to answer common
stakeholder questions. Before
providing funding for the rest of the
effort, our stakeholders are likely to
ask us fundamental questions such as:
What are we going to deliver?; How
much will it cost?; and When will we
deliver it? To answer these questions,
we will need to work through what we
believe the initial scope of our next release will be.

2. We need to know what to work on initially. We want to do just enough
requirements elicitation to understand what our stakeholders want, so that we can
confidently begin Construction. We will also have to do some detailed, look-ahead
modeling, to explore the high-priority work items that we will work on for the first
few weeks of Construction. Basically, we will need to have a sufficient understanding
of these requirements, so that we can do the work to implement them.

3. We want to set reasonable expectations as to what we’ll deliver. Both the team
and our stakeholders need to come to an agreement around a reasonable scope for
the current effort that is being funded, so that we’re all working toward the same
vision.

Key Points in This Chapter

 We need to do just enough
requirements exploration so that we
understand what we’re trying to
achieve as a team.

 User stories and epics often need to
be supplemented with other models
to explore domain, user experience,
and business process concerns.

 You should have a strategy to agree
upon and manage quality
requirements.

 Consider what techniques and tools
you will need to prioritize and
manage your work.

136

Figure 9.1: The goal diagram for Explore Scope.

137

As you can see in the Explore Scope goal diagram, we need to consider several important
process outcomes:

 What is the purpose of our solution?

 How will we explore the ways that people will potentially use the solution?

 How will we explore domain concepts, the business process(es) to be supported by
the solution, UI requirements, and general requirements?

 How will we capture quality requirements?

 How will we approach modeling activities?

 How will changing requirements be managed throughout Construction?

 What level of detail do we need to capture?

Explore Purpose

An important question to answer early on is: “Why are we creating this solution?” or “What
is the value we will produce?” In other words, what is our purpose? The purpose of a potential
solution is often initially explored at a high level during the concept or “ideation” phase before
a solution delivery team is initiated (see Chapter 6 for an overview of the phases of the system
life cycle) as part of our portfolio management efforts to identify solutions/products that are
potentially worth investing in. While we explore the scope of our solution, we will also need
to explore the purpose, which arguably guides the focus of our requirements elicitation efforts
and work prioritization. Several common techniques for exploring purpose are compared in
the table below.

Options (Not Ordered) Trade-Offs

Impact map. An application of
a mind map to explore a goal
(what), the actors involved
(who), the impact (why), and
the deliverables (how)
[ImpactMap].

 Great way to visually work through the analysis of a
high-level requirement or strategy.

 Helps teams to explore their assumptions and align
their activities with the overall business roadmap.

 See mind map.

Mind map. Brainstorm and
organize ideas and concepts
[W].

 Very visual and easy to understand notation.

 Used to structure similar ideas during a conversation.

 Supports collaborative idea generation, particularly
when used with tools such as whiteboards and sticky
notes.

 Can lead to categorization of an idea earlier than is
optimal, thereby shutting down lines of inquiry.

 Allows capture of off-topic ideas without losing
context of current discussions

Modified impact map. An
impact map (see above) where
the focus is on outcomes rather
than deliverables.

 By focusing on outcomes, rather than deliverables, a
team can explore requirements effectively without
diving into solution design too early.

 Complementary to user experience (UX) design
thinking strategies.

 See impact map.

138

Options (Not Ordered) Trade-Offs
Outcome. An outcome
describes a desired, measurable
result that is pertinent to our
stakeholders.

 Outcomes describe what stakeholders would like to
achieve and why they would like to achieve that, but
not how to do so.

 Provides teams flexibility in how to achieve the desired
outcome.

 Useful to capture high-level stakeholder needs.

Value proposition canvas. Used
to explore, typically via sticky
notes, the fit between a
product/solution and the
customer(s) it is meant to
delight [ValueProposition].

 Enables you to identify the value proposition of your
solution/product, the needs of your (potential)
customers, and to explore the fit between them.

 Simple tool that is straightforward and easy for
stakeholders to learn.

 You still need to validate your value proposition with
actual (potential) customers, perhaps via the
Exploratory life cycle, via prototyping, or similar
means.

 Often used in combination with a business value
canvas, which explores the long-term vision for a
product, by product managers [AmblerLines2017].

Explore Usage

There are many ways to explore how people will work with our solution. Although there is
significant focus within the agile community on user stories and epics, and a growing
appreciation for design thinking, these aren’t our only choices. Disciplined Agilists prefer to
use the best technique for the situation they face, and as you can see in the table below there
are several options available to us.

Options (Not Ordered) Trade-Offs

Epic. Large stories that take a lot
of effort, often multiple iterations,
to complete. Epics are typically
organized into a collection of
smaller user stories [W].
Sometimes epics are referred to as
features or user activities.

 Useful for high-level program planning.

 Appropriate level of detail for low-priority work
since the details are likely not well understood yet
and are likely to change anyway.

Persona. Detailed descriptions of
fictional people who fill roles as
stakeholders of the solution being
developed [W].

 Used as a technique to build empathy for users as
real people, and to understand the optimal user
experiences for each.

 Useful when we don’t have access to actual end
users, or potential end users.

 Can be used as an excuse not to work with actual
users.

Unified Modeling Language
(UML) use case diagram.
Diagrammatic notation for a
textural use case [W,
ObjectPrimer].

 Puts use cases, and potentially usage scenarios and
epics if we’re flexible, into context.

 Can promote requirements reuse via <<include>>
and <<extend>> relationships.

 Can motivate unnecessary complexity via
<<include>> and <<extend>> relationships.

139

Options (Not Ordered) Trade-Offs
Usage scenario. Describes the
step-by-step interaction between a
user/actor and the solution.
Similar to acceptance criteria,
although tends to cross the
equivalent of several stories. Also
known as a use-case scenario [W,
ObjectPrimer].

 Useful to flush out all the different ways that a
solution can be used, often putting granular
requirements such as stories or features into
context.

 Danger of becoming a set of detailed requirements.

 Scenarios are typically less structured than
acceptance criteria, making the testing of them more
difficult.

Use case. Textural specification
describing all different usage
scenarios for the goals of the
system [W, ObjectPrimer].

 Puts requirements into the context of actual usage
scenarios.

 Traditional use cases can require significant effort to
write, although it is possible and highly desirable to
write simple use cases instead.

User story. One or two sentences
to describe something of value to a
user [W, ObjectPrimer].

 The most common technique to organize the agile
usage requirements.

 Very high-level depiction of usage requirements,
often requiring detailed modeling at some point in
the future before the story is sufficiently
understood, or ready, for development.

 Due to the granularity of stories, it can be difficult
to understand their context without another artifact
such as an epic or usage scenario.

User story map. User stories are
placed on a flat surface (a wall in
the case of sticky notes, a table in
the case of index cards, or a screen
in the case of digitally captured
stories). They are then organized to
indicate the epic they are part of
and the production release they are
assigned to [Patton].

 Puts stories into context.

 Enables planning and scoping.

Explore the Domain

We may wish to create an information model to capture key concepts and relationships within
our business domain, particularly when that domain is complex. These models/artifacts
should be kept as simple as possible and only created when they provide valuable insight for
the team. You may even consider adopting a domain-driven design (DDD) approach where
the primary focus is on domain concepts and logic [DDD], rather than the usage-driven
approach based on user stories/epics common on agile teams. The following table captures
several options for exploring domain concepts.

140

Options (Not Ordered) Trade-Offs

Domain/conceptual model. A
high-level data model showing
the entities and the relationship
between them. Attributes of the
entities are optionally indicated
[W, ObjectPrimer].

 A simple way to explore the entities and their
relationships.

 Experienced data modelers will often want to capture
far more information than is required, leading to
wasted effort.

Event storming. A collaborative
Agile Modeling session focused
on exploring business domain
events and the business domain
itself. Often used with a domain-
driven design (DDD) approach
[EventStorming].

 Inclusive, collaborative modeling session involving a
range of stakeholders.

 Originally focused on a handful of modeling
techniques, in particular event and domain modeling;
it has since expanded into something very similar to
an Agile Modeling session.

 Requires facilitation, planning, and an agile modeling
room.

Glossary. A collection of the
definitions of key terms, often
captured in a wiki [W,
ObjectPrimer].

 Useful to ensure alignment on terminology.

 Can lead to excessive documentation—we don’t
need the level of precision of a professionally written
dictionary.

Logical data model (LDM). A
diagram showing data entities and
their attributes without depicting
the actual physical
implementation and types for the
entities [W, ObjectPrimer].

 Suitable to get agreement on basic data entity
relationships without the need for up-front
understanding of the actual physical representation.

 The need to capture logical data information is often
overblown. Concise data guidance and a practical
approach to the physical data model will often
suffice.

UML class diagram. Similar to a
domain model with a notation
that supports adding more detail
around data attributes,
relationships, aggregation, and
composition [W, ObjectPrimer].

 Suitable in more sophisticated domains or where a
certain amount of up-front data design is required.

 Usually overkill for most situations and the more
robust notation (compared with other models listed
above) can motivate the big requirements up-front
(BRUF) approach.

Explore the Process

When our existing business processes, or potential solution processes, are complex we should
consider investing some time exploring them. Our aim should be to understand how people
currently work and more importantly to consider if there are better ways to achieve the same
outcomes. We must also strive to ensure that the business process supported by our solution
reflects the overall direction of our organization, often captured by our business roadmap (see
the Align with Enterprise Direction process goal in Chapter 8). The following table overviews
several common options for exploring or capturing processes.

141

Options (Not Ordered) Trade-Offs

Business process diagram.
Used to depict the activities and
the logical flow between them
within a process. Could be done
in freeform format or with a
notation such as Business
Process Modeling Notation
(BPMN) [W].

 Useful to understand current and future state business
processes.

 Formal notation can be useful for understanding
handoffs, responsibilities, delays, and other valuable
information about the business processes, but this can
be time-consuming.

 Some modeling notations, particularly BPMN, can be
overly complex and difficult for business stakeholders
to work with.

Data flow diagram (DFD).
Shows movement of data
through a business or solution
process, depicting
activities/subprocesses, data
flows, data stores, and external
entities/actors. Popularized in
the 1970s for structured analysis
and design approaches [W,
ObjectPrimer].

 May be useful in modeling legacy information flows.

 Can often lead to BRUF, particularly when modelers
have a structured analysis and systems design (SASD)
background.

Flowchart. A technique
popularized in the 1970s to
explore detailed process logic,
showing activities, decisions,
and flow between them [W,
ObjectPrimer].

 A traditional way of exploring business logic and
business rules.

 Easy to teach stakeholders.

 Difficult to depict complex scenarios in a
comprehensible manner (use UML activity diagrams
instead).

UML activity diagram. Explores
processes/activities and the
control flow between them [W,
ObjectPrimer].

 Useful for modeling the sequence of process steps.
Includes mechanisms to model processes by
responsibility with swim lanes, as well as to model
parallelism of activities.

 Notation can become complex, increasing the chance
that stakeholders will not understand them.

UML state chart. Describes the
life cycle of the key entity
statues of the solution [W,
ObjectPrimer].

 Suitable for modeling complex behaviors and states in
real-time systems.

 Can be difficult for stakeholders to understand due to
the level of abstract thinking.

Value stream map. Depicts
processes, the time spent
performing them, the time
taken between them, and the
level of quality resulting from
processes. Used to explore the
effectiveness of existing
processes and to propose
improved ways of working [W,
MartinOsterling].

 Identify potential inefficiencies in a process.

 Can be very illuminating when there is disagreement
around the effectiveness of a process.

 Suitable when the focus of the solution is on
improving the process flow.

142

Explore User Interface (UI) Needs

Understanding the usability of the solution is critical to ensuring that what we are producing
is consumable (it is functional, usable, and desirable). Our team should be following
organizational user interface (UI) and user experience (UX) guidelines where appropriate, see
Align with Enterprise Direction (Chapter 8), to increase consistency across solutions. It
should also embrace an agile “design thinking” strategy where we purposefully work with
potential end users to explore how they will work with our solution and, better yet, be
delighted by it [W].

Options (Not Ordered) Trade-Offs

User interface (UI) flow
diagram. Explores how the
various screens and reports all fit
together. Often created as a
sketch on a whiteboard or with
sticky notes on a drawing surface.
Sometimes called a wireframe
diagram [W, ObjectPrimer].

 Provides a high-level view of how major UI elements
fit together to support one or more scenarios.

 Provides insight into potential consumability
problems long before the solution is built.

UI prototype (high fidelity).
Identifies the user-facing design
of screens and reports, and the
flow between them. Often
requires a digital prototyping tool
or a UI development tool [W,
ObjectPrimer].

 Concrete way to explore what people want our
solution to do.

 Explores the solution’s look and feel to ensure we’re
building something desirable.

 Provides a mechanism to stakeholders to take
portions of the solution for a “test drive” long before
they’re coded.

 Can motivate significant up-front UI exploration and
design, thereby taking on the risks associated with
BRUF.

UI prototype (low fidelity).
Identify requirements for screens
and reports using inclusive tools
such as paper and whiteboards.
Also called a screen sketch [W,
ObjectPrimer].

 Easily explore requirements for the UI in a platform-
independent manner.

 Quickly explore potential UI design options without
the overhead of high-fidelity UI prototyping.

UI specification. Define exactly
how a screen or report is to be
built by the development team.

 High potential to jump into design long before it’s
appropriate.

 Motivates overdocumentation of the UI.

 Changing UI requirements (which is very common)
can make it very difficult to keep UI specifications up
to date.

Explore General Requirements

There are several strategies with which we can organize and support our other requirements
techniques. Several common techniques are compared in the table below.

143

Options (Not Ordered) Trade-Offs

Business rule. Defines a
domain-oriented constraint on
our solution, often part of the
“done” criteria for functional
requirements [W,
ObjectPrimer].

 Often acceptance criteria for one or more usage
requirements.

 Sometimes implemented as automated developer unit
tests, particularly for a granular business rule.

 Can result in overmodeling at the beginning of the
endeavor when using a formal business rule modeling
approach.

Context diagram. Shows the
primary users of the solution,
their main interactions with it,
and any critical systems that the
solution interacts with [W,
ObjectPrimer].

 Useful as a high-level overview of how the solution fits
into the overall organizational ecosystem.

 Often a key diagram for a vision statement.

Feature statements. Captures
the solution’s key capabilities
and benefits at a high level. Can
provide a high-level description
of scope to our stakeholders in
a vision statement [W,
ObjectPrimer].

 Straightforward approach to capturing functional
requirements at a level our key stakeholders will
understand.

 Feature statements will often stray into design through
inadvertently specifying an aspect of the
implementation.

Impact map. An application of
a mind map to explore a goal
(what), the actors involved
(who), the impact (why), and
the deliverables (how)
[ImpactMap].

 Great way to visually work through the analysis of a
high-level requirement or strategy.

 Helps teams to explore their assumptions and align
their activities with the overall business roadmap.

 See mind map.

Mind map. Brainstorm and
organize ideas and concepts
[W].

 Very visual and easy-to-understand notation.

 Used to structure similar ideas during a conversation.

 Supports collaborative idea generation, particularly
when used with tools such as whiteboards and sticky
notes.

 Can lead to categorization of an idea earlier than is
optimal, thereby shutting down lines of inquiry.

 Allows capture of off-topic ideas without losing
context of current discussions

Modified impact map. An
impact map (see above) where
the focus is on outcomes rather
than deliverables.

 By focusing on outcomes, rather than deliverables, a
team can explore requirements effectively without
diving into solution design too early.

 Complementary to user experience (UX) design
thinking strategies.

 See impact map.

Shall statement. Formal
approach to capture functional
or quality requirements.
Traditionally captured in a
detailed software requirements
specification (SRS) [W,
ObjectPrimer].

 Supports contractual documentation requirements in
some government and defense environments.

 Can motivate overdocumentation/BRUF.

 Often ambiguous as they typically do not put the
requirements into a context of usage, leading to
difficulties prioritizing them.

144

Options (Not Ordered) Trade-Offs
Value proposition canvas. Used
to explore, typically via sticky
notes, the fit between a
product/solution and the
customer(s) it is meant to
delight [ValueProposition].

 Enables you to identify the value proposition of your
solution/product, the needs of your (potential)
customers, and to explore the fit between them.

 Simple tool that is straightforward and easy for
stakeholders to learn.

 You still need to validate your value proposition with
actual (potential) customers, perhaps via the
Exploratory life cycle, via prototyping, or similar
means.

 Often used in combination with a business value
canvas, which explores the long-term vision for a
product, by product managers [AmblerLines2017].

Explore Quality Requirements

What is quality? Answering this question can be difficult because quality is in the eye of the
beholder, or as Gerry Weinberg was wont to say, “Quality is value to some person.” The
implication is that we need to work closely with our stakeholders to discover what quality
means to them. Quality requirements—also known as nonfunctional requirements (NFRs),
system-wide requirements, quality of service (QoS) requirements, or “ilities”—address issues
such as security, availability, reliability, performance, usability, and other key concerns. Figure
9.2 shows potential categories of quality requirements. Quality requirements drive many of
the acceptance criteria for our functional requirements as well as architectural decisions (see
the Identify Architecture Strategy process goal in Chapter 10) and test strategy (see the
Develop Test Strategy process goal in Chapter 12) decisions. As you can see in the following
table, there are several ways to capture quality requirements.

Figure 9.2: Potential categories of quality requirements.

145

Options (Ordered) Trade-Offs

Acceptance criteria. Quality-
focused approach that captures
detailed aspects of a high-level
requirement from the point of
view of a stakeholder.

 Motivates teams to think through detailed
requirements.

 Dovetails nicely into a behavior-driven development
(BDD) or an acceptance test-driven development
(ATDD) approach.

 Many quality requirements are cross-cutting aspects of
several functional stories, so relying on acceptance
criteria alone risks missing details, particularly in new
requirements identified later in the life cycle.

Explicit list. Enables us to
capture quality requirements in
a “reusable manner” that cross-
cuts functional requirements.

 Not attaching quality requirements to specific
functional requirements allows the option of using
proof of technology “spikes,” rather than waiting for an
associated story.

 Requires a mechanism, such as acceptance criteria, to
ensure that the quality requirement is implemented
across the appropriate functional requirements.

Technical stories. Simple
strategy for capturing quality
requirements that is similar to
an explicit list.

 Works well when a quality requirement is
straightforward and contained.

 Not appropriate for quality requirements that cross-cut
many functional requirements because we can’t address
the quality requirements in a short period of time.

Apply Modeling Strategy(ies)

There are several techniques that we can apply to work with stakeholders to elicit the
information required to scope our solution. These modeling strategies often require
preplanning—you at least need to schedule and invite people to them—and often require
follow-up to share the results of the session with the participants.

Options (Ordered) Trade-Offs

Agile Modeling (informal)
sessions. An informal,
collaborative approach to
modeling where stakeholders
are often actively involved
using simple, inclusive
modeling tools such as
whiteboards and paper
[AgileModeling].

 Works well when the people involved can be brought
together in a modeling room.

 Works well with small groups of people, but can be
scaled to “teams of teams” with the proper
coordination.

 Requires some facilitation to ensure that a range of
issues are addressed.

 Modeling sessions, even informal ones, can require
some scheduling lead time.

146

Open space. An open space is
a facilitated meeting or
multiday conference where
participants focus on a specific
task or purpose (such as
sharing experiences about
applying agile strategies within
an organization). Open spaces
are participant driven, with the
agenda being created at the
time by the people attending
the event. Also known as open
space technology (OST) or an
“unconference” [W].

 Works well with a disparate group of people that need
to hear each other.

 Often produces important insights that leadership may
not have been aware of and innovative ideas.

 Requires some up-front planning, facilitation, and
follow-through to share the results.

 Some people will not like what appears to be the
“unplanned” nature of open space.

Joint application requirement
(JAR) sessions. Formal
modeling sessions, led by a
skilled facilitator, with defined
rules for how people will
interact with one another.

 Scales to dozens of people.

 Works well in regulatory environments due to the
creation of defined agendas, requirements
documentation, and other artifacts.

 Can require significant overhead to schedule.

 Can sometimes be overly focused on the JAR process
and documentation format rather than the
collaboration.

Interviews. Someone
interviews stakeholders
individually or in small groups
to identify their needs.

 Works well when we need to clarify information
previously provided by a stakeholder.

 May be the only option for geographically distributed
stakeholders.

 Interviews are expensive and time-consuming.

 Doesn’t provide the opportunity for disparate
stakeholders to interact with one another, to hear one
another, and to prioritize together.

 Sometimes not everyone’s opinion is equally respected.
The highest paid person’s opinion (HIPPO) may skew
the findings. We often need to remind senior
stakeholders that they must listen to the other
stakeholders.

Choose a Work Item Management Strategy

Early in the life cycle, we need to identify how changing stakeholder needs will be dealt with.
As requirements are identified, how are they going to be recorded, prioritized, and managed?
This decision is highly related to the level of detail that we choose to capture—the more
flexible our work item management approach, the less detailed our requirements
documentation needs to be.

147

Options (Ordered) Trade-Offs

Work item pool. A lean
approach that enables team to
implement several prioritization
strategies simultaneously.
Examples of prioritization
strategies include business value,
items to be expedited, fixed date,
and intangible items such as
paying down technical debt or
attending training.

 Requires teams to consider a variety of issues,
including stakeholder value, risk, team health, and
enterprise issues.

 Done properly, this requires discipline to manage
work in process (WIP).

Task board. A lean strategy
where the life cycle, including
prioritization, of work items is
managed visually by the team.

 Prioritization is visible and transparent to the team
and stakeholders.

 A task board effectively does double duty—a place
where we prioritize our work as well as manage it.

 Supports highly collaborative planning and
coordination sessions.

 Simple approach that can be implemented with sticky
notes, index cards, or agile management software.

Work item list. Similar to a Scrum
product backlog, but includes all
types of work, not just
requirements. In addition to value,
work is also prioritized to
implement risk-related items early.

 Helps to ensure that all work is made visible and
prioritized, not just new requirements.

 Can be frustrating to stakeholders to see how much
non-new work, such as fixing defects or paying down
technical debt, needs to be done by delivery teams.

Requirements (product) backlog.
A unique, ranked stack of work
that needs to be implemented for
the solution. Traditionally
comprised of a list of requirements
in Scrum, although now some
“requirement-like” work such as
fixing defects is also included.

 Simple to understand and implement.

 Typically doesn’t include the concept of risk in the
prioritization scheme, thereby reducing the team’s
chance of success.

 Nonrequirement, or requirement-like work, still
needs to be managed somehow.

None. Changing stakeholder
needs will not be supported
during Construction.

 Viable for short-term, straightforward efforts where
the requirements are known up front and
stakeholders are comfortable with them not evolving
over time. These situations are very rare in practice.

 Very often the requirements do in fact need to evolve,
even when you believe that is not the case.

 Typically results in a solution that meets the original
requirements specification but is not desired/used by
the end users because the solution doesn’t meet their
actual needs.

Level of Detail of the Scope Document

How much detail, if any, will we need to capture in our requirements artifacts? This decision
will be driven primarily by issues such as regulatory compliance, geographic distribution of
team members, and our organizational culture. We recommend the Agile Modeling advice of
“less is more”—aim to have requirements documentation that is just barely good enough for

148

our situation, recognizing that it’s more effective to explore the details when we actually need
them.

Options (Ordered) Trade-Offs

Outcome driven. The
requirements are captured in the
form of high-level outcomes or
goals, and there is explicit
agreement to explore the details
later. Outcomes are typically
captured as a simple point-form
list that is easily available to
anyone involved with the
initiative.

 Provides significant flexibility in how the team will
approach implementation.

 The team, and their stakeholders, must be very
comfortable with ambiguity.

 Requires a very skilled and organized team.

Requirements envisioning
(light specification). A set of
simple models, typically captured
as sketches and minimal text
descriptions (such as those
described by Agile Modeling).
Examples include user stories,
personas, story maps, and low-
fidelity UI prototypes
[AgileModeling].

 A way to quickly and inexpensively explore and come
to an agreement around initial requirements.

 When the team is not colocated in the same area as
where the requirements are captured, we will likely
need to capture our work somehow (perhaps via
digital pictures or via input into a tool). Note that we
should consider getting the team together face-to-
face during Inception to work through key issues
around scope, architecture, and the plan—this is
referred to as “big room planning” or simply “agile
modeling.”

Detailed specification. This
includes the traditional approach
to requirements, often referred to
as big requirements up front
(BRUF), where detailed
documents are written to capture
the requirements before
development begins. In a small
number of cases this may be a
traditional model-driven
development (MDD) strategy
where the specifications are
captured using sophisticated
modeling tools.

 Only effective in situations where the solution is very
well understood and the requirements are unlikely to
change (which is rare in practice).

 Often requires expensive and time-consuming
requirements management efforts to update,
typically resulting in change prevention rather than
change management.

 May be required in life-critical regulatory situations
or when solution delivery is being outsourced.

No document. The stakeholders
describe their needs to the team
and the team produces something
based on that conversation.

 Appropriate in situations where the effort is low risk,
there is tolerance for minimal governance, or when
the stakeholders are colocated with the delivery team
full-time, allowing for easy face-to-face
collaboration.

 Shortens the Inception effort.

149

10 IDENTIFY ARCHITECTURE STRATEGY

The Identify Architecture Strategy process goal, formerly known as Identify Initial
Technical Strategy, is shown in Figure 10.1. This process goal provides options for how
we will identify a potential architecture strategy, or sometimes strategies, for producing a
solution for our stakeholders. There are several reasons why this is important:

1. It enables effective evolutionary
architecture. We can avoid major
problems later on in Construction
by doing a bit of thinking up front
to get going in the right direction
while allowing the details to evolve
later.

2. We want to identify, and
hopefully eliminate, key
architectural risks early. A little bit
of up-front modeling goes a long
way toward identifying critical
technical risks early on. We can then
mitigate them later through
strategies such as proving the
architecture with working code early
in Construction or via spikes.

3. Avoid technical debt. By thinking
through critical technical issues
before we implement the solution,
we have the opportunity to avoid a technical strategy that needs to be reworked at a
future date. The most effective way to deal with technical debt is to avoid it in the
first place.

4. Improved DevOps integration. Because DAD teams are enterprise aware,
they understand the importance of the overall system life cycle, which includes
both development and operations activities. During architecture envisioning,
DAD teams will work closely with operations staff to ensure that their solution
addresses their needs. This potentially includes mundane issues such as the
backup and restore of data and version control of delivered assets, as well as
more complex issues such as monitoring instrumentation, feature toggles, and
support for A/B testing. DAD teams strive to address DevOps issues
throughout the entire life cycle, starting with initial envisioning efforts.

5. Enables us to answer key stakeholder questions . Our teams are being
governed, like it or not. It’s very likely that at some point our stakeholders will
want to know how we believe we will build the solution before they will fund the
team. Furthermore, our architectural strategy is an important input into answering
similar questions around how much money we need and how long we think this
will take.

Key Points in This Chapter

 We should invest a minimal, yet
sufficient, amount of time to
consider our architectural strategy.

 We should keep architectural
exploration as lightweight and
minimal as possible.

 There are many ways to explore
architecture opportunities such as
modeling, mobbing, and spikes.

 There are various types of
architectural models relevant to our
context in the areas of technology,
business, and user interface (UI).

 Look for opportunities to increase
quality and accelerate delivery by
leveraging proven architectural
assets.

150

6. Enhance initial scoping and planning efforts. Our solution architecture will
inform our scoping efforts, motivating questions about requirements as well as
suggestions for better options. Similarly, architecture also affects our plan in that
some architecture strategies take longer to implement than others, architectural
activities such as proof-of-concept (PoC) efforts may need to be scheduled, and the
cost of new architectural assets may need to be taken into account.

To successfully address this goal, we need to consider several important questions:

 What is our overall strategy for producing a solution? Will we buy, extend, or build
new?

 How many architectural strategies should we consider?

 What level of detail do we need to go to?

 What will our approach to exploring the architecture be?

 What models, or views, should we produce (if any)?

 How will we go about understanding the legacy assets that we’ll work with?

151

Figure 10.1: The goal diagram for Identify Architecture Strategy.

152

Identify a Delivery Strategy

Not all IT solutions require building everything new from scratch. In fact, the majority of
teams extend existing solutions to provide improved value to their stakeholders. As you can
see in the table below, we have several options to choose from.

Options (Ordered) Trade-Offs

Extend existing
solution(s). If we have an
existing solution, or existing
legacy assets that can be
integrated together, we may
choose to extend or
customize them.

 Typically requires very little architectural modeling.

 We may have a team in place that already understands
the existing solution and can efficiently extend it.

 The existing technology may be stale and may have
accrued technical debt.

Build from scratch. Some
solutions are “bespoke,” built
new to address the needs of
stakeholders.

 Often requires significant investment in exploration
of the architecture (via modeling, mob programming,
etc.) due to the potential architectural risks involved.

 Allows maximum tailoring of the solution for the
stakeholders.

 Due to the uncertainty of the technology and
perceived needs, this may be our most risky option.

Configure a commercial
package. Configure a new or
existing package such as SAP
or Oracle PeopleSoft to meet
stakeholder needs.

 Potentially our least risky option since configuration
does not require changing the software and
potentially injecting defects.

 Packages often offer greater sophistication than we
require and a greater range of functionality than we
require, while missing some functionality and being
inflexible in portions of their implementation.

 Suitable when we don’t have in-house developers
who can build or extend a package.

Extend a commercial
package. Some
customization of a
commercial package may
require extending or
modifying the source code of
the package.

 Enables us to take advantage of a sophisticated
package while tailoring it to our needs.

 Often requires investment in spikes (see below) or a
proof of concept (PoC) to explore how the package
works in our environment.

 May be difficult to remain on the package’s release
path when extensive modifications have been made.

 May require redoing some changes when new
versions are released.

 May be more cost effective than building from
scratch, particularly when a small number of changes
are required.

153

Select an Architecture Strategy

Our overall architectural strategy is an important deciding factor in how much effort we need
to put into initial architecture modeling. When we are extending an existing solution there is
very likely little architecture exploration required—the architecture is already known.
However, a new solution, particularly one in a complex space, is likely to require a bit of up-
front thinking before we dive into Construction. As you can see in the following table, we
have several options available to us.

Options (Ordered) Trade-Offs

Existing proven
architecture. This is the
most common approach,
with roughly 80 % of agile
teams being in this situation.

 Modeling will be required when there is the intent to
make architecturally significant changes to the
current approach.

 People unfamiliar with the existing architecture will
need to be given help to learn about it (often a
discussion led by our architecture owner).

Multiple candidate
architectures. Several
architectural strategies are
identified and worked
through, ideally leading to the
selection of the most likely
architectural strategy. This is a
form of set-based design.

 Enables us to have several delivery teams work on
the problem, often leading to a “bake-off” where the
best strategy to move forward with is chosen.

 Provides us with a “plan B,” a “plan C,” and so on,
that we can shift to when our architectural strategy is
disproved early in Construction.

 Increases the cost and expense of initial architecture
modeling, but potentially reduces long-term risk
through considering a wide range of options.

Single candidate architecture.
Although the team will
discuss a range of options,
they focus their efforts on a
single approach that they feel
is best.

 The most common option, particularly for teams
that have a limited budget, when architectural
modeling is required.

 Focusing on a single strategy is less expensive in the
short term, but risks cutting options off early and
requiring future rework.

 Can be hard to get agreement around a single vision,
requiring leadership from the architecture owner to
guide the team through difficult discussions.

Explore the Architecture

There are several options available to us for how we may decide to explore our architectural
strategy. This exploration effort will be led by our architecture owner. The architecture owner
on our team should work closely with our organization’s enterprise architects, if our
organization has any, to understand the architectural direction of our organization so as to
guide how we explore the architecture. In fact, our architecture owner might also be an
enterprise architect. Several architecture exploration strategies are compared in the following
table.

154

Options (Not Ordered) Trade-Offs

Model. One or more people
discuss and capture an
abstraction of what someone
would like produced
(requirements/needs) or how
the team will produce it
(architecture/design). A
model, or portion thereof, may
be captured as a sketch on a
paper or a whiteboard, as a
drawing in a digital tool, or as
text on sticky notes, index
cards, paper, or even a digital
tool.

 Enables people to work through problem or solution
domain issues, thereby reducing risk.

 Face-to-face discussion around a shared sketching
environment is known to be the most effective way for
people to communicate [Communication].

 Often perceived by developers as something we need
sophisticated, digital tooling for (whereas most modeling
is done on paper and whiteboards in practice).

 Potential for traditionalists to take modeling too far, to
do too much of it too early, because that is what they are
familiar with.

Discuss. Two or more people
gather, either physically or
virtually, to talk with one
another about an issue.

 Enables people to work through problem or solution
domain issues, thereby reducing risk.

 Face-to-face discussion is a very effective way for people
to communicate.

 Discussions can go in circles. When this happens,
consider shifting to modeling to help achieve focus.

 To persist the conversation we will need to record it, take
notes, or model somehow.

Mob programming. The team
gathers around a single
workstation, with one team
member coding while the
others observe, discuss, and
provide advice. The
programmer is swapped out
regularly and everyone codes at
some point. The code is often
projected onto a large screen
[W].

 Enables teams to work through a complex technical
issue.

 Enables teams to develop an example of how to
implement an important, and often reusable, technical
strategy.

 Arguably, a face-to-face discussion around a shared
sketching environment, where the “sketch” is the source
code being projected on the screen.

 Often misunderstood by management and seen as
wasteful, as it is perceived as a technique for “many
people programming” instead of “many people
thinking.” This is due in most part to the name of the
technique.

Open space. An open space is
a facilitated meeting or
multiday conference where
participants focus on a specific
task or purpose (such as
sharing experiences about
applying agile strategies within
an organization). Open spaces
are participant driven, with the
agenda being created at the
time by the people attending
the event. Also known as open
space technology (OST) or an
“unconference” [W].

 Works well with a disparate group of people that need to
hear each other.

 Often produces important insights that leadership may
not have been aware of and innovative ideas.

 Requires some up-front planning, facilitation, and
follow-through to share the results.

 Some people will not like what appears to be the
“unplanned” nature of open space.

155

Options (Not Ordered) Trade-Offs
Spike. Code is written to
explore a technology, or
combination of technologies,
that is new to the team. Spikes
typically take a few hours or a
day or two. In effect, an
informal and small proof of
concept (PoC)
[ExtremeProgramming].

 Enables teams to quickly and cheaply learn about how a
technology works (or doesn’t) in their environment.

 Reduces technical risk by (dis)proving parts of our
architectural strategy.

 The code is often of low quality, on purpose, and thrown
away afterward.

Proof of concept (PoC). A
technical prototype that is
developed over several days to
several weeks to explore a
technology. Formal success
criteria for the PoC should be
developed before it begins.

 Reduces risk by exploring how a major technical feature,
often an expensive software package or platform, works
in practice within our environment.

 PoCs can be large, expensive efforts that are sometimes
run as a mini project.

 Success criteria is often politically motivated and
sometimes even oriented toward a predetermined
answer.

Apply Modeling Strategy(ies)

Similar to the Explore Scope goal, we will want to decide how to explore the potential
architectural approach(es) for our solution. There are several options available to us for
approaching the modeling or exploration of our architecture strategy.

156

Options (Not Ordered) Trade-Offs

Agile modeling (informal)
sessions.
Modeling/planning
performed face to face using
inclusive tools such as
whiteboards and paper
[AgileModeling].

 Works very well with groups of up to seven or eight
people, but can be scaled to much larger groups with
skilled facilitation.

 Potential for very collaborative and active modeling with
stakeholders.

 Requires some facilitation to ensure that a range of issues
are addressed.

 Can require significant lead time to schedule.

 Experienced architects, including enterprise architects
who our team relies on, may not be comfortable with
informal modeling.

Interviews. Someone
interviews stakeholders
individually or in small
groups to identify their
technical requirements and
guidance.

 Expensive way to derive our strategies because it often
requires a lot of going back and forth between the people
involved.

 Risk missing someone in important discussions, or at
least requires additional interviews with the appropriate
people involved.

 An option when people are geographically distributed or
when people are unwilling to collaborate with a wider
group.

Joint application design
(JAD) sessions. Formal
modeling sessions, led by a
skilled facilitator, with
defined rules for how people
will interact with one another
[W].

 Scales to dozens of people.

 Many people may get their opinions known during the
session, enabling a wide range of people to be heard.

 Works well in regulatory environments.

 Works well in contentious situations where extra effort is
required to keep the conversation civil or to avoid
someone dominating the conversation.

 “Architecture by consensus” often results in a mediocre
technical vision.

 Formal modeling sessions risk devolving into being
specification-focused, instead of communication-
focused, efforts.

Model-driven development
(MDD)/computer-aided
software engineering
(CASE). Detailed
requirements, architecture,
and design are captured using
complex, software-based
modeling tools [W].

 Works very well for complex solutions being developed
in a narrow technical domain, in particular systems
engineering.

 Requires significant skill and sophisticated tools on a
long-term, ongoing basis to accomplish.

 Many of the modeling tools do not have a comprehensive
testing solution available.

“What-if” discussions.
Identify potential technical
and business changes that
could impact our
architecture.

 Enables us to think through potential situations, and
thereby steer our architecture in a better direction.

 Supports a lean “think before we act” approach.

 Potentially motivates teams, particularly those new to
agile, to overbuild their solution.

157

Model Technology Architecture

As you can see in the following table, there are many potential model types available to explore
and capture the technology aspects of our architecture. Our strategy for the technology
aspects of our architecture should reflect our organization’s technology roadmap (see Align
with Enterprise Direction in Chapter 8). We will likely want to do some minimal modeling of
the technical architecture for new solutions when:

 Material changes to the architecture of an existing solution are needed.

 Significant integration is required between existing legacy assets.

 A package often requires significant integration with existing legacy assets.

Options (Not Ordered) Trade-Offs

Architectural stack
diagram. Describe a high-
level, layered view of the
hardware or software (or
both) of our solution
[ObjectPrimer].

 Explores fundamental issues around architecture.

 Best suited for layered architectures.

 Well understood by most IT and systems professionals.

 Not well suited to describe architectures based on a
network of components or services.

Cloud architecture diagram. A
style of deployment diagram
used to explore how a
solution is deployed across
on-premises infrastructure
and cloud-based
infrastructure; typically a
freeform diagram.

 Critical for any team where a portion of the “back end” for
their solution is deployed to the cloud.

 Easier to understand than UML deployment diagrams.

 Should be combined with threat boundaries (see threat
model below) so as to address security concerns.

 This is an emerging architectural view, so most of the
advice around this technique is vendor focused at present.

 Can be overly simplistic, particularly when “the cloud” is
treated as a nebulous black box.

Network diagram. Model
the layout of major hardware
elements and their
interconnections (network
topology) [W, ObjectPrimer].

 Well understood by most IT and systems professionals.

 Can become very large and unwieldy.

Threat model. Consider
security threats via a form of
deployment/network diagram
[W].

 Straightforward way to explore security threats to our
solution long before we build/buy it.

 Threat boundaries can be indicated on any type of diagram,
although a specific diagram is often useful.

 Can mask a lack of security expertise within the team by
making it appear that we’ve considered the issues.

UML component diagram.
Describe software
components or subsystems,
and their interrelationships
(software topology) [W,
ObjectPrimer].

 Can be used to explore either technical or business
architecture issues.

 Can easily become overly complex.

158

Options (Not Ordered) Trade-Offs
UML deployment diagram.
Explore how the major
hardware components work
together and map major
software components to them
(solution topology) [W,
ObjectPrimer].

 Well understood by most IT and systems professionals.

 Diagrams can become quite large in complex
environments.

UML state chart. Explore the
dynamic nature of our
architecture. Also known as a
state machine diagram [W,
ObjectPrimer].

 Particularly useful in real-time systems to explore or even
simulate potential behaviors of interacting systems.

 Usually used at the detailed-design level for smaller
components.

Model Business Architecture

In Disciplined Agile, we remind people that we are delivering solutions, not just software. In
many situations, the solution being delivered supports new or changed business processes.
Our strategy for the business aspects of our architecture should reflect our organization’s
business roadmap (see Align with Enterprise Direction in Chapter 8). Our team’s product
owner will be a primary stakeholder of the business architecture and should be actively
involved in its exploration. The following table provides a range of potential model types to
explore and capture our business architecture.

Options (Not Ordered) Trade-Offs

Business process diagram.
Identify business processes,
data sources, and the data
flow between them.
Common notation options
include Business Process
Modeling Notation (BPMN)
and UML activity diagrams
[W].

 Effective way to visually explore existing or potential
processes supported by the solution.

 When sketched collaboratively, process diagrams can be
an effective way to communicate with business
stakeholders.

 Complex BPMN can motivate overmodeling.

Capability map. Depicts
what a business does to reach
its strategic objectives (its
capabilities) rather than how
it does it (its processes).
Sometimes called a business
capability map
[CapabilityMap].

 Captures a stable and long-lasting view of the enterprise
that can be used to guide prioritization decisions.

 Easily understood by both business and technical people.

 Can be used to explore both future capabilities as well as
existing capabilities.

 At the solution level, connects solution capabilities to
implementation.

 At the enterprise level, connects business strategy to
execution.

Data flow diagram (DFD).
Explores the data flows
between major processes,
subsystems, and the people
and organizations that
interact with the solution [W,
ObjectPrimer].

 Effective way to explore the high-level processing that
the solution is involved with.

 When the notation is kept simple, this tends to be a very
intuitive technique to use with stakeholders.

159

Options (Not Ordered) Trade-Offs
Domain/conceptual
model. Identifies major
business entities and their
relationships. Typically
captured using data models,
entity relationship diagrams
(ERDs), or unified modeling
language (UML) class
diagrams [W, ObjectPrimer].

 Promotes a common understanding of domain
terminology, which helps us to simplify our other
artifacts through consistent terminology.

 Provides a high-level start at our data schema and
business class schema.

 Supports a domain-driven design (DDD) approach to
development [DDD].

 Can motivate overmodeling by people with a traditional
data background.

Logical modules diagram.
Depicts the critical modules
(systems, data sources,
microservices, frameworks,
etc.) or our architecture at a
functional level. Sometimes
called a logical architecture
diagram [W, ObjectPrimer].

 Promotes a common, high-level understanding of the
architecture.

 Useful for thinking through important aspects of the
architecture without making implementation decisions
about it.

 Can often become too abstract to anyone beyond the
people who created it.

UML component diagram.
Describes software
components or subsystems,
and their interrelationships
(software topology) [W,
ObjectPrimer].

 Can be used to explore either technical or business
architecture issues.

 Can easily become overly complex.

Model User Interface (UI) Architecture

The user interface (UI) is the system to most end users. The UI architecture drives the
usability, and hence consumability, of our solution—so it behooves us to invest a bit of time
thinking it through up front. The following table provides several common options for
exploring and capturing the UI aspects of our architecture. Although these options are also
applicable to the Explore Scope process goal described earlier, in this case, our focus is on the
architectural applications of these techniques.

Options (Not Ordered) Trade-Offs

UI flow/wireframe diagram.
Depicts the flow between major
UI elements (such as
pages/screens and reports) [W,
ObjectPrimer].

 Explores a high-level view of how major UI elements
will fit together to support one or more usage
scenarios, enabling us to explore potential
consumability issues long before the UI is built.

 On its own, this technique can be too abstract for
stakeholders, so it needs to be supported via
prototyping.

160

Options (Not Ordered) Trade-Offs
UI prototype (high fidelity). A
mockup of one or more major
UI elements using software to
explore the detailed screen
design [W, ObjectPrimer].

 Concrete way to quickly explore what people want
our solution to do and thereby identify a more
consumable solution early in the life cycle.

 When used to design a few key pages/screens, this is
an effective way to explore UI design details with
stakeholders.

 When used to design all or most of the pages/screens,
this leads to a lengthy “big design up front” (BDUF)
strategy that often produces a detailed design that
proves to be brittle in practice.

 UI designers often fall into the trap of showing
stakeholders a beautiful prototype that can’t actually
be built, thereby setting unreasonable expectations.

 Prototyping tools may not exist for our platform,
requiring potentially slower coding.

 Some users believe that the system is “almost done”
when they see high-fidelity screen prototypes.

UI prototype (low fidelity). A
user-centered design technique
where we use paper and sketches
to mock out the requirements
for, or design of, major UI
elements. For example,
requirements for a report could
be identified by manipulating
sticky notes on a whiteboard [W,
ObjectPrimer].

 A quick and easy approach that avoids the problems
associated with high-fidelity prototypes.

 Can be too abstract for some stakeholders, so we
often find we still need to develop high-fidelity
prototypes of a few pages/screens to show
stakeholders that we understand how they want the
UI to be built.

Investigate Legacy Assets

The majority of agile delivery teams work with one or more legacy assets, be they web services,
legacy data sources, or legacy systems. Many times agile teams are responsible for extending
and paying down the technical debt within those assets. Unfortunately, in some cases, our
team is not familiar with the legacy assets and therefore must learn about them. The following
table compares common strategies for investigating legacy assets.

Options (Not Ordered) Trade-Offs

Collaborate with asset
owner(s). The team works
with the people who know the
legacy assets best to
understand the implications of
working with them.

 Very effective way to learn about how the asset is
actually built and what challenges we’re likely to run into
working with it.

 Assets owners, or at least people knowledgeable about
the asset, often aren’t available.

161

Options (Not Ordered) Trade-Offs

Reverse engineer models.
Modeling tools are used to
visually explore the
architecture and design of the
asset based on the existing
code and data schema.

 Can be a great way to learn about an asset and the
dependencies it is involved with.

 These tools often aren’t available for all of the
technologies used to build the asset or if they are, they
are often expensive.

 The models generated can often be overly detailed (a
reflection of the architectural problem we face working
with it).

Run regression test suite.
The team works with the
regression test suite for the
asset to understand the impact
of potential changes.

 Automated regression tests are effectively executable
specifications that are in sync with the implementation,
meaning we can trust them.

 Regression tests work well for people who can
understand and work with code.

 Regression test suites rarely exist, or when they do,
they’re often not sufficient for legacy assets.

Read overview
documentation. The team
reads the available high-level
documentation, or the
overview portions of detailed
documentation, to understand
the asset.

 Overview documentation provides a high-level
description, including key diagrams, that can be quickly
read by team members.

 Likely to be reasonably accurate because of its high-level
nature, so can be trusted.

 Enables team members to make reasonable guesses as
to where to dive into the implementation to make
changes.

 We still need some way to understand the details.

Analyze data sources. The
team uses data visualization
and query tools to explore
what is actually stored in a data
source. Also called data
archaeology.

 Effective way to discover what data are actually being
stored within a data source.

 Can be very time-consuming, particularly for a large data
source.

Read source code. The team
works with the source code for
the legacy asset to understand
how it is built, also called code
archaeology.

 Some legacy source code can be difficult to work with,
particularly code that has been worked on by many
people over the years.

 There may be significant reluctance to change the source
code due to high coupling within it and a lack of
automated regression tests to identify potential
problems when we do.

 We may not have the actual code used to build the
currently running version of the asset.

Read detailed
documentation. The team
works with the detailed
documentation associated
with the asset to understand
how it’s built.

 Can be a good starting point to understand a legacy
asset, in particular the high-level overview portions of
the documentation.

 The detailed portions of it are likely out of sync with the
implementation so shouldn’t be trusted.

162

Level of Detail of Architecture Document

Similar to other goals like Explore Scope, we will need to decide what level of detail is
appropriate for describing our initial architecture strategy.

Options (Ordered) Trade-Offs

High-level
overview. Capture
our architecture
strategy with a few
key diagrams and
concise supporting
documentation
[AgileModeling].

 Increases the chance that the architecture model will be used and
evolved over time.

 Enables team to coalesce around a technical vision.

 Enables flexibility, particularly when architectural options are left
open.

 Detailed design decisions can be deferred to when they can be
most appropriately made, consistent with the lean “defer
commitment” practice.

 Requires team members to have greater design and architecture
skills.

 Team members making deferred decisions must be aware of
enterprise architectural direction and guidelines.

 Can motivate overbuilding our solution early in the life cycle,
particularly when the team is new to agile.

 May not be sufficient in regulatory situations.

Executable interface
specification. Capture
the interface
definitions of critical
architectural
components (such as
microservices,
services, or
frameworks) using
automated tests
[APIFirst].

 Enables teams to safely work on architectural components in
parallel.

 Executable specifications are more likely to remain in sync with
the application; and when run as part of our automated testing
strategy, they reduce the feedback cycle when changes to the
interface do occur.

 Requires time to develop and test the executable specifications
and mocks/stubs for the architectural components.

 Potentially increases the chance that we will overbuild our
solution, which increases both cost and delivery time.

 In regulatory situations, it requires auditors who understand this
approach.

Detailed interface
specification. Capture
the interface
definitions of critical
architectural
components using
detailed
documentation
[APIFirst].

 Enables teams to work on architectural components in parallel.

 Enables us to mock or stub out the interfaces to components
early.

 The interface will still need to evolve throughout the project,
although hopefully not much, requiring negotiation between the
owning subteam and customers of the evolving component.

 Requires time to develop and write the documentation.

 Potentially increases the chance that we will overbuild our
solution, which increases both cost and delivery time.

163

Options (Ordered) Trade-Offs
Detailed
specification. Define,
in detail, exactly how
we intend to build the
solution before we
actually do so. This
typically includes
detailed interface
specifications,
internal designs, and
specifications of
cross-cutting
concerns. Sometimes
referred to as “big
design up front”
(BDUF).

 Enables teams to work on architectural components in parallel.

 Details can deceive people into believing that the architecture will
actually work (when it still hasn’t been proven), thereby
increasing risk.

 Important decisions are made early in the life cycle based on
information that is likely to evolve, thereby increasing risk.

 Decreases morale of developers by taking away the challenges
associated around architectural work.

 Increases overhead to evolve the architecture when the
requirements change or the chosen technologies evolve.

 Supports a documentation-based governance strategy, increasing
organizational risk.

 Requires significant time (and cost) to perform.

 Potentially increases the chance that we will overbuild our
solution, which increases cost, delivery time, and overall risk.

No document. Don’t
capture our up-front
architectural thinking
at all.

 Works well for very simple solutions produced by very small
teams.

 Shortens the Inception effort.

 Team members don’t have a common architectural vision to
work toward, resulting in confusion and wasted effort.

 Too many decisions are deferred to Construction, increasing the
chance of rework.

165

11 PLAN THE RELEASE

The Plan the Release process goal, shown in Figure 11.1, provides options for creating an
initial plan for our team. There are several
reasons why this is important:

1. Our stakeholders will require
answers to fundamental
management questions. In
particular, the majority of agile teams
are asked how long a release will take
and how much it will cost.

2. We can help our stakeholders to
evolve their agile mindset. Initial
release planning often proves to be a
useful time to help our stakeholders
move away from a cost/budget
mindset toward a value-delivered
mindset, and similarly away from a
schedule/date mindset toward a
delivered-outcomes mindset. This
mindset shift, which can be difficult at
first, supports a partnership relationship between our team and our stakeholders,
which will enable us to streamline how we work together.

3. We want to have a viable strategy. Our primary goal should be to think things
through before we do them, not to produce documentation (a plan) describing what
we think we’re going to do.

4. We need to set reasonable expectations. Our stakeholders, including other
delivery teams, will make important decisions based on our plan. Similarly, during
Inception the team decides how it will work together and the plan will reflect several
key decisions such as choice of life cycle, governance strategy, and risk mitigation
efforts.

Key Points in This Chapter

 Our team should create a release
plan that we believe we can
reasonably be expected to work to.

 We should strive for continuous,
rolling wave plans maintained at a
high level.

 We will need to make decisions
regarding our need for phases,
releases, iterations, and their
cadences.

 There are many estimating
strategies, including #NoEstimates
that we consider.

 There are many options for
capturing and managing our plans.

166

Figure 11.1: The goal diagram for Plan the Release.

167

Although the details will emerge throughout Construction, we should still think about the
general timing of our work and what, if any, dependencies are involved. When we are
developing an initial release plan, we need to consider several important questions:

 Who will be involved in planning?

 What is the scope of our planning effort?

 What is our overall strategy driving this plan?

 How detailed should our plan be?

 What cadences will the team adopt?

 What approach to estimating will we take?

 What units will we estimate in?

 What artifacts/views will we capture about our plan?

Source of Plan

We need to decide who will be responsible for formulating our release plan. This decision will
have a significant impact on the realism of the plan and the acceptability of it to the team.

Options (Ordered) Trade-Offs

Self-organizing team.
The team, with someone to
facilitate, creates the plan.

 Produces a realistic plan that is acceptable to the people who
have to execute on it, but it may not be what senior
management and stakeholders want to hear.

 Still needs someone to facilitate the planning effort, and
team members may need some coaching in the various
planning techniques (this typically takes a few hours).

 When facilitated by the team lead, there is a danger that the
team lead may push the plan in a direction that they prefer.

 Teams new to agile run the risk of insufficient initial
planning—detailed planning during Construction supports
initial release planning, it doesn’t replace it.

Team leadership. The team
lead, product owner, and
architecture owner develop
the plan for the team.

 This is a reasonably low-cost option as fewer people are
involved (compared with the entire team doing it).

 Realistic plan will likely be developed, albeit not as good as
one developed by a self-organizing team.

 Team members may not “own” the plan because they
weren’t involved.

Manager facilitated. A
manager, often from
outside the team, leads the
team through planning
[PMI].

 Produces a plan that is acceptable to senior management
and stakeholders.

 The team may be intimidated by the manager, particularly if
a reporting relationship exists, and be unwilling to be fully
honest in development of the plan.

 The plan may be overly optimistic due to aggressive goals.

 Beware of manager-driven plans with a façade of being
manager facilitated.

168

Options (Ordered) Trade-Offs

Manager-driven. A manager
produces the plan, often
with some input from team
members, and presents the
plan to the team [PMI].

 Produces a plan that is acceptable to senior management
and stakeholders.

 The plan is often overly optimistic due to aggressive goals,
increasing the risk that the team won’t deliver on the plan.

 The team may not accept the plan given to them, decreasing
their motivation to follow it.

 The plan doesn’t reflect the realities faced by the team.

 Significant effort is invested throughout the project on
tracking actual results against the plan.

 Plans based on generic positions/people are often
inaccurate, as the productivity of developers has been
shown to range by more than an order of magnitude
between individuals within an organization.

 Watch out for plans that make unrealistic assumptions
about staff availability, dependencies on deliveries by other
teams, or implementation technologies.

Scope of Plan

We need to identify the scope of our release plan so that we know where to focus our planning
efforts. During Inception, DAD teams typically produce a plan for the current release they
are working on and may consider, at a very high level, future releases.

Options (Not Ordered) Trade-Offs

Product/solution. The plan
addresses long-term issues
that go beyond a single release.
These plans are best done at a
high level.

 Sets stakeholder expectations, at least at a high level, as to
the long-term strategy of the team.

 There is better alignment with the organization’s long-
term strategy.

 The further out in time that we plan, the less realistic the
plan becomes due to the impact of change.

Release. The plan focuses on
the effort required for the next
major release of the solution
into production. These plans
are best done in rolling-wave
fashion. This is often referred
to as a “project plan.”

 Enables the team to come to an agreement around
reasonably short-term strategy, particularly when releases
are frequent.

 Does not address long-term planning needs for some
stakeholders, particularly other teams or organizations
with dependencies on our releases.

Scheduling Strategy

Our releases will typically be driven by either a fixed date, a minimum amount of scope, or by
a fixed cost. It may even be driven by two of these three factors, although our risk increases
when we do so. It should not be driven by all three factors, otherwise risk of failure is almost
certain.

169

Options (Not Ordered) Trade-Offs

Continuous delivery. The
solution is to be delivered
incrementally by the team, as
needed by the stakeholders
[W].

 Provides significant flexibility as all three of scope,
schedule, and cost are allowed to vary.

 Reflects the way that teams following either the
Continuous Delivery: Agile or Continuous Delivery: Lean
life cycles (see Chapter 6) work.

 Stakeholders must actively monitor what the team is
producing, provide feedback, and identify when to deploy.

 Provides significant control to stakeholders over scope,
schedule, and cost (assuming they’re willing to do so).

 Can appear as “unpredictable” to people unfamiliar with
the approach. In fact, this is very predictable given the
transparency and control provided to stakeholders.

Date driven. The solution is
to be delivered on a
predetermined date (or
sooner), therefore either
scope or cost (or both) will
need to vary.

 Provides some degree of certainty around the delivery date
to stakeholders so that they can be prepared to receive and
support the solution. See Accelerate Value Delivery goal
(Chapter 19).

 Works well with one of DAD’s project-oriented life
cycles: the Agile (Scrum-based) life cycle or the Lean
(Kanban-based) life cycle (see Chapter 4).

 Useful for product companies where their customers
expect releases on predetermined dates.

Scope driven. The solution is
to be delivered when a
minimum amount of
acceptable functionality has
been produced, therefore
either the cost or the
schedule (or both) must vary.

 Useful where time to market is paramount and delivering
the minimal acceptable functionality is desired.

 Works well with one of DAD’s project-oriented life
cycles: the Agile (Scrum-based) life cycle or the Lean
(Kanban-based) life cycle (see Chapter 4).

 Effective for regulatory projects where the scope is driven
by an outside organization (typically the government).
Note that a delivery date is often also set on such projects.

 Typically results in a difficult-to-predict timeline, at least
initially, until the capacity of the team is determined.

Cost driven. The solution is
to be delivered for a specific
amount (or less), therefore at
least one of schedule or scope
must vary.

 Useful when our organization is focused on coming in on
budget as opposed to spending our IT investment wisely
(the nuance is important).

 Typically results in poor quality or a solution that doesn’t
meet the needs of stakeholders due to management going
with the lowest-cost service provider (in the case of
outsourcing).

Level of Detail of the Plan

What level of detail is required for our release plan? This decision will determine the amount
of initial effort that we put into documenting our planning efforts, as well as how much effort
we will need to maintain the documented plan over time. We want to take advantage of
planning, which is to think through critical issues in advance, but not take on the risks of
overthinking or making commitments too early, which are associated with overly detailed
planning. In short, aim for just enough planning.

170

Options (Ordered) Trade-Offs

Rolling wave. Plans are
continuously updated (like
waves), with more detail for
upcoming work, and less for
work further out [W, PMI].

 Very effective in fluid environments where requirements
are evolving over time.

 Works well with rolling-wave budgeting, aligning
continuous funding practices with continuous planning.

 Enables teams to produce honest timelines and budgets for
their stakeholders.

 Requires flexibility on the part of stakeholders, removing
their (comforting) sense of false predictability in favor of
providing them the ability to steer and guide the team to
success.

High level. The release plan
does not address the
detailed work to be
performed, trusting the
team to self-organize and do
whatever is appropriate.

 Useful to give stakeholders a high-level forecast for what
will be delivered over time and to identify dependencies
with other teams.

 Provides some sense of “predictability” without taking on
the costs of detailed planning.

 May be uncomfortable for people seeking the false sense of
security that comes with detailed plans.

Detailed. The release plan
contains significant details
around the work to be done
and may even assign that
work to specific roles or
people.

 Only practical for trivial initiatives where the degree of
uncertainty related to requirements and technology are low
and the schedule is actually predictable.

 Provides a false sense of predictability to stakeholders.

 Requires significant, and usually unnecessary, effort to
maintain later in the life cycle as the situation evolves.

 Drives down the morale of team.

 Often justified by need to be regulatory compliant, even
though the regulations very likely don’t require detailed up-
front planning.

None. The release plan is
not documented at all.

 Appropriate for simple, low-risk initiatives in a very highly
collaborative environment.

 No documentation overhead.

 Does not provide transparency to stakeholders who are not
actively collaborating with the team.

Choose Schedule Cadences

We will need to pick our cadences for how we are going to work as a team. This will help to
drive our release dates, opportunities for feedback, testing cycles, and other critical planning
aspects. The following table captures potential cadence levels for us to consider.

171

Options (Not Ordered) Trade-Offs

Production releases. How
often will we release our
solution into production?

 Enables our team to coordinate our deployment strategy
with our organization’s release management team (if any).

 DAD teams prefer small, regular releases because they
provide more frequent opportunities for feedback, thus
increasing the chance they will build the right solution. On
average, an agile/lean team releases into production every
45 calendar days, 30 % of teams release at least weekly, and
68 % at least monthly [SoftDev18].

 Helps to set expectations with stakeholders.

 Runs the risk of disappointing stakeholders if we don’t
release when we promised.

Phase duration. How long
do we believe Inception,
Construction, and
Transition will take (if
applicable)?

 Applicable for project-based life cycles (the continuous
delivery life cycles are effectively phase-less).

 It is difficult for a new team to predict how long Inception,
and particularly Transition, efforts will take. The average
agile/lean team spends 11 days in Inception activities and
six in Transition activities [SoftDev18].

 Evolving requirements will often extend Construction,
particularly when we are not following a date-driven
planning strategy.

Internal releases. How
often will we deploy
internally into our demo and
testing environments?

 If parallel independent testing will occur, then we need to
negotiate how often we need to make our working builds
available to that team. The average agile/lean team releases
internally every nine calendar days, although 54 % release
internally one or more times a day [SoftDev18].

 We will need to negotiate with our stakeholders about how
often they would like the demo environment refreshed.

 Teams with a continuous integration (CI) and continuous
deployment (CD) pipeline in place will be able to
effortlessly deploy frequently (perhaps many times a day).

Iteration length. If we have
selected an Agile (Scrum-
based) life cycle, how long
will our iterations/sprints
be?

 Shorter iterations are better because they provide more
frequent opportunities for feedback and learning.

 An iteration carries an amount of overhead with it,
sometimes called process taxes, so shorter iterations can
increase overhead percentage.

 Of the teams doing iterations, 82 % have two-week
iterations and 5 % have one-week iterations [SoftDev18].

172

Estimating Strategy

If we are required to estimate our release then we have many options for doing so. It is worth
noting that there is much debate in the agile community regarding the value of estimating,
popularized by the hashtag #NoEstimates on Twitter (see Chapter 2), so understanding the
trade-offs associated with the various strategies is critical. Recently, the terms forecasting of
releases and sizing of work items have been replacing the term estimating, given the baggage
associated with the term. For people with a good sense of humor, and honesty for that matter,
the term guesstimate is also popular. The following table compares and contrasts several
estimating strategies available to you.

Options (Ordered) Trade-Offs

Educated guess by an
experienced
individual(s). The team
designates someone(s) to
provide a guess based on
their experience.

 A quick approach and often realistic estimate.

 Requires a high degree of trust by the team that the estimator
will provide an estimate reflective of the average team
member.

Educated guess by
team. The team provides
an estimate based on
consensus and their
collective experience.

 Quick way to get to an estimate that is acceptable to the team.

 Tends to be overly optimistic, particularly when there is little
experience within the team with what they are estimating.

 The estimate can be easily swayed by the more senior or the
loudest person in the room.

 Should be updated incrementally throughout the life cycle as
the team gains more information.

Similar-sized items. All
work items are created so
that they are close to the
same amount of effort.

 This is a form of #NoEstimates because we merely have to
count the number of similarly sized work items (everything is
effectively of size 1).

 Sometimes a work item is broken down too much in an effort
to have similarly sized items, resulting in the need to track the
various parts that make up the whole.

Relative mass (grid)
valuation. Relative point
estimates are developed by
putting work items on a
grid using the Fibonacci
sequence for sizes
[Estimation].

 Effective if there is a need for very rapid estimating.

 Resulting estimate is almost as good as that produced by
planning poker.

 Much faster due to the parallel nature of the estimation
effort—everyone on the team puts work items onto grid cells
at once, discussing anything they disagree on while doing so.

Planning poker. Based
upon a technique called
Wideband Delphi, work
items are sized based upon
“relative points.” A point
estimate is identified by a
team estimate, not an
individual one [Cohn].

 Well-known technique that is widely adopted by Scrum
practitioners.

 Very good way to size the work because many people discuss
what needs to be done, the people who will do the work
estimate it, and the work items tend to be reasonably small.
Furthermore, the shared discussion improves the team’s
understanding of what needs to be done.

 Very slow due to the serial nature of the technique—the team
discusses each work item one at a time.

173

Options (Ordered) Trade-Offs
None. No estimate is
produced. A
#NoEstimates strategy
[NoEstimates].

 Appropriate where stakeholders are not asking the team to
project their schedule or cost.

 Lean-based teams may choose to derive forecasts from
measured lead and cycle times rather than manually estimate
individual work items.

Function points.
Traditional estimating
technique based upon
number of outputs,
inquiries, inputs, internal
files, and external
interfaces [W].

 Relies on a history of estimating similar efforts and
technologies.

 Appropriate where a third party is requested to provide an
estimate with limited understanding of the domain.

 The formula relies on “fudge factors,” so functional point
counts aren’t as comparable as many will claim.

Cost set by stakeholders.
The stakeholders, typically
a senior leader, sets the cost
(more accurately an upper
limit on the cost) for the
release.

 Appropriate with a cost-driven scheduling strategy, but scope
or schedule (or both) must be allowed to vary.

 Tends to motivate high-risk plans due to unrealistic cost
requests by decision makers.

174

Choose Estimation Unit

An important decision to make when estimating or sizing work items is the unit in which you
are doing so. Regardless of whether you’re estimating the complexity of the work, the value
of it to your stakeholders, or the amount of work to be performed, the team will need to use
a consistent measurement unit to do so. The following table presents several estimation
options available to us. It’s important to note that the trade-offs listed below are for release
planning, not iteration or detailed planning during Construction.

Options (Ordered) Trade-Offs

Relative points. The team
develops its own point
system. It does this by
choosing a work item,
assigning it a number of
points, and then sizing
everything else based on
how it compares with the
first work item.

 Increases the chance that the team will believe in their
estimate because they define the estimation unit.

 Enables the team to quickly and inexpensively estimate at a
high level.

 Points-based estimates can be easily used to provide cost or
time projections via strategies such as (ranged)
burnup/burndown charts.

 People new to points-based estimates can become confused
with how points are then “converted” into hours during
detailed planning (see the Produce a Potentially Consumable
Solution process goal in Chapter 17 for how to do so).

T-shirt sizes. The team uses
sizes such as Small,
Medium, Large, and Extra
Large [Cohn].

 Enables the team to quickly and inexpensively estimate at a
high level.

 Easy to get going with this technique.

 Can be difficult to project cost or schedule because sizes
can’t be easily added to one another (Small + Extra Large =
?). This can be overcome by converting sizes to points or
hours.

 People new to this strategy can become confused with how
points are then “converted” into hours during detailed
planning.

Normalized points. The
team uses a common
pointing system that is in
use by other teams. Very
often implemented as
relative points across a
program or even entire IT
department. Can also be
implemented as an hours-
based strategy (i.e., 1 point
= 8 hours) [SAFe].

 Useful across a program so that estimates performed by
subteams/squads may be rolled up into an overall program
estimate.

 Injects the overhead of defining, and then maintaining, a
common estimation unit across teams. Difficult to keep
teams consistent without a regular planning session, such as
program increment (PI) planning, across the teams.

 This isn’t exact. The units will still vary a bit across teams
based on their different understandings of what a point
represents.

 Very questionable strategy when teams are not part of a
larger program.

175

Hours. The team estimates
in terms of hours of work
effort to implement or
perform the work item.

 Enables easy roll-up of estimates across teams because
they’re using a consistent unit (hours).

 Tends to be a very expensive form of estimation due to the
tendency to dive down into detailed implementation issues.

 Tends to promote detailed up-front planning, which in turn
proves to be wasteful due to evolving requirements later in
the life cycle.

 You need to know who is doing the work, because the
productivity of an experienced developer can be an order of
magnitude greater than that of a novice.

Capture Plan

Throughout our planning efforts, we will consider several critical views: outcomes, staffing
(people), financial (cost and value), and schedule (time). As we discussed earlier, we prefer an
outcome-/value-based mindset over a cost-/schedule-based mindset among our
stakeholders—stakeholder mindset will influence what our planning efforts focus on as well
as what aspects of our plan we choose to capture. The following table explains several
potential artifacts that we may choose to create in order to capture our plan for our endeavor
(which may be a project, the next release of our solution, or our team’s work for a given period
of time). As always, the true value is in planning (the collaborative thinking), not in the plan
itself. For any artifacts that we do create, we should follow agile documentation strategies and
keep them as minimal and focused as possible.

Options (Not Ordered) Trade-Offs

Burndown chart.
Projects/indicates the
expected number of
Construction iterations left,
given the current size of the
required work for this release
and the team’s current
velocity [W].

 Provides a reasonable estimate as to the time required to
implement the functionality.

 A straightforward visualization that is easily understood.

 Common report that is automatically generated by agile
management tools.

 Provides a point-specific estimate instead of a ranged
estimate. This is relatively poor practice because estimates
are actually probability distributions.

 The projected schedule tends to shift over time, usually
negatively, due to changing stakeholder needs. As a result
the initial estimates tend to be overly optimistic.

 Requires significant work on the part of the team to size
the work that is being depicted in the chart.

Burnup chart.
Projects/indicates the
expected number of
Construction iterations left
given the minimum required
work for this release and its
intersection with the team’s
projected delivery of
functionality [BurnUp].

 Same as for burndown chart.

 The choice of burndown or burnup is a matter of
preference. Some people believe that burnup charts
provide a more positive depiction than burndowns.

176

Options (Not Ordered) Trade-Offs
Business canvas. Captures
critical information about the
endeavor, potentially including
the expected outcomes, a
summary of the scope, the
sponsor(s), and why the
endeavor is important.

 Straightforward, text-based planning/strategy artifact.

 Provides an excellent summary of the endeavor, and can
be an important information radiator moving forward.

 Often used to develop and then maintain the vision for the
endeavor.

 Typically requires a facilitated planning session to develop
(see the Coordinate Activities process goal in Chapter 23).

Cost projection. The
estimated cost of the
endeavor.

 A simple, text-based artifact usually developed using a
spreadsheet.

 Important part of a business canvas.

 The quality of the cost project is directly related to our
understanding of the scope, the people on the team, and
our architectural strategy.

Desired outcome(s). Our
stakeholders’ expectations of
what they hope our team will
produce.

 Straightforward, text-based list that is easy for stakeholders
to understand.

 Provides greater flexibility for the team by allowing them
to make critical promises about what stakeholder value will
be delivered without committing to how it will be
delivered.

 Important part of a business canvas.

 Key information radiator for the team and stakeholders.

Gantt chart (detailed). A
diagram depicting the
scheduled activities,
dependencies between them,
and potentially even the people
assigned to the activities at a
minute level [W, PMI].

 Appropriate for high-risk endeavors with a low rate of
change.

 Visual representation that is well understood by
management.

 Motivates too much planning up front, which leads to
making commitments too early and thereby restricting the
flexibility of the team.

Gantt chart (high level). A
diagram depicting the major
activities and the
dependencies between them
for our endeavor. See Figure
11.2 for an example [W,
PMI].

 Visually depicts key information, particularly dependencies
and milestone dates.

 Helps the team to think through critical issues that will
need to be worked through in the future.

 Helps to set stakeholder expectations.

 Common diagram that is well understood by management.

 Good information radiator.

 Critical events, in particular the projected end of
Construction and potential delivery date, should be
presented as a range if stakeholders are able to understand
that strategy. See Figure 11.3 for an example.

Iteration schedule. An
overview of how a typical
iteration will work, including
when the planning, demo,
retrospective, wrap up, and
coordination meetings will be
held.

 Text-based representation of a schedule that is easy to
create.

 For agile teams only (lean teams don’t have iterations).

 Often maps expected work items/stories to the iteration,
but this tends to be difficult to maintain over time as the
stakeholder needs evolve.

 Dependencies can be difficult to depict.

177

Options (Not Ordered) Trade-Offs
Milestone schedule. Projected
milestone review dates.

 A focused, text-based list of milestones and expected dates
for them.

 Sets stakeholder expectations as to when the team intends
to address key milestones.

 Potential aspect of a business canvas.

 As stakeholder needs evolve, dates will shift moving
milestones further out in time. Expected dates should be
given as a range.

PERT/GERT chart.
Alternatives to Gantt charts
that provide different views
on the schedule [W].

 A program evaluation review technique (PERT) chart
depicts the tasks and activities within a schedule that is
often used to identify the critical path within a plan. Can
be automatically generated from a Gantt chart in a
traditional project management tool such as Microsoft
Project.

 A graphical evaluation and review technique (GERT) chart
is a probabilistic treatment of a complex plan that contains
many dependencies and even loops.

 These two diagrams have fallen out of favor within the IT
project management community.

Ranged burndown chart. A
burndown chart showing a
ranged projection for when
Construction will end. The
range is calculated via the
gross velocity (the number of
points delivered) and the net
velocity (the change in the
number of points of
functionality remaining)
[Ranged].

 Provides a ranged estimate as to the time required to
implement the functionality.

 The projected ranges tend to vary, often dramatically, early
in the life cycle. After a few iterations they tend to focus in
on a range that tightens over time.

 The chart is a straightforward visualization.

 Many people do not like the idea of a ranged estimate,
preferring the often false predictability of a point-specific
estimate instead.

Ranged burnup chart. A
burnup chart with a ranged
projection for when
Construction will end based
on the projected delivery of
the minimum scope to be
delivered and the changed
minimum scope.

 Same as for ranged burndown chart.

Staffing plan. A
matrix/table that maps
(potential) team members and
their skills. May also indicate
availability dates for the team
members.

 Enables the team to identify the requisite skills, and any
gaps in skills, for the endeavor.

 Critical input into estimating the cost of the endeavor.

 Increases the chance of building a whole team.

 Only works when you have a good idea as to the scope of
the endeavor, the architectural strategy, and the process
the team will be following. The DAD process goals can
provide insight into the required skills.

178

Options (Not Ordered) Trade-Offs
Table. A listing of the critical
activities, dependencies,
dates, and potential people
associated with the activities.

 Text-based representation of the schedule. Basically the
text-based equivalent of a Gantt chart (and often produced
automatically by traditional project-planning tools).

 Works well for a high-level schedule or as a reference for
a detailed schedule.

Value projection. The
estimated value of the
endeavor. Can be graphical or
text based.

 Critical input into determining the potential financial
benefit of the endeavor (benefit = value – cost).

 Potential aspect of a business canvas.

Figure 11.2: Example of a high-level Gantt chart.

Figure 11.3: Example of a Gantt chart depicting critical “dates” as ranges.

179

12 DEVELOP TEST STRATEGY

The Develop Test Strategy process goal, shown in Figure 12.1, provides options for how our
team should plan how we will approach verification and validation. There are several reasons
why this is important. We want to ensure:

1. We have sufficient skills within the
team. Our testing strategy will drive
whether we need people with the skills
to write automated tests; the skills to
perform specialized types of testing
such as performance testing, security
testing, and exploratory testing; test-
first development skills; and so on.

2. We have sufficient technical
resources. We need to determine
whether we have sufficient access to
resources, such as testing tools, test
data, and testing environments. Figure
12.2 depicts the test automation
pyramid [GregoryCrispin], which
indicates the various levels of testing
and tooling support our team will need
to consider. Exploratory testing is
depicted as a cloud because it can
occur at any time or level.

3. We build quality in. We want to build
quality into the way that we work,
rather than inspect it in after the fact.
Important strategies to do this include
preferring test-first or test-driven strategies over testing after the fact, coaching
people in design and usability skills, testing throughout the entire life cycle rather than
testing at the end, and adopting a mindset that quality is everyone’s responsibility. Of
course, this begs the question: “What is quality?” The challenge is that quality is in
the eye of the beholder, or as Gerry Weinberg was wont to say, “Quality is value to
some person.” The implication is that we need to work closely with our stakeholders
to discover what quality means to them (see Explore Scope in Chapter 9 for some
thoughts on this).

4. We fulfill our organizational needs. Our team may have regulatory compliance,
governance procedures, and organizational standards around security and data that
need to be addressed.

5. We test to the risk. Our testing strategy should be driven by the risk that we face—
the more complex the domain problem we face or the more complex the technology
that we’re working with, the more robust our testing strategy will need to be.

6. We reduce the feedback cycle between defect injection and defect
identification. In the 1970s, Dr. Barry Boehm, a computer science researcher,
discovered that the average cost of fixing defects rises exponentially the longer it takes
us to find the defect. Dr. Boehm continued researching this into the early 2010s and
found, not surprisingly, that it holds true for agile as well as traditional teams. The

Key Points in This Chapter

 Before beginning Construction, it is
important to consider the many
aspects of testing our solution. We may
wish to outline a plan and strategy in a
lightweight fashion.

 We want to understand what types of
testing will be done by whom and what
skills are required.

 Everyone helps test, but we may
additionally see a need for independent
testing of our work.

 We need to consider what types of tooling
and environments will be required and
how they will be provisioned.

 A strategy needs to be in place to test
quality requirements.

 We must identify a strategy for manual
and automated testing.

 We need to determine what our strategy
is for capturing and managing defects,
along with the associated tooling.

180

implication is that we want to adopt testing and quality techniques that have a short
feedback cycle, and that map various techniques to the cost-of-change curve, as we
can see in Figure 12.3.

Figure 12.1: The goal diagram for Develop Test Strategy.

181

Figure 12.2: The test automation pyramid.

182

Figure 12.3: Comparing the average cost to fix potential defects based on when and
how they are found.

To be effective, we need to consider several important questions:

 How will we staff our team?

 How will we organize our team?

 How will we capture our plan?

 How will we approach testing?

 How intense will our testing be?

 How will we approach development/programming?

 How will we choose a platform for test environment(s)?

 How will we choose a platform-equivalency strategy?

 How will we test nonfunctional requirements?

 What types of testing do we expect to perform?

 How will we automate testing?

 What type of automated tests will we have?

 How will we obtain test data?

 How will we automate builds?

 How will we report defects?

 How will we govern our quality efforts?

183

Test Staffing Strategy

We need to determine the type of people we intend to have performing testing activities so
that we can bring the right people onto the team when needed.

Options (Not Ordered) Trade-Offs

Generalizing specialists. A
team member with one or
more deep specialties, in this
case in testing, a general
understanding of the overall
delivery process, and the
desire to gain new skills and
knowledge [GenSpec].

 Provides greater flexibility for staffing, greater potential
for effective collaboration, greater potential for overall
productivity, and greater career opportunities.

 It takes time for existing specialists to grow their skills and
some people prefer to be specialized.

 This option requires people with the development skills
to be able to write automated tests, not just manual testing.

Exploratory testers. Someone
who is skilled at probing
solutions to identify how they
work and any unexpected or
broken behavior. Often
includes ad hoc manual
regression for dependent
functionality [W].

 Finds potential defects that the stakeholders may not have
thought of, often problems that would have only been
found in production, where they are typically more
expensive to fix.

 Requires significant time and effort to gain this skill.

 Exploratory testing is a manual effort, making it slow and
expensive at first, but it in turn identifies checks that can
then be automated and run inexpensively from then on.

Behavior-driven development
(BDD) analysts. Someone
who is skilled at analyzing
stakeholder needs and
capturing them as executable
specifications (tests)
[ExecutableSpecs].

 When written before the functionality, the acceptance
tests both specify and validate the functionality.

 Requires significant skill and discipline on the part of the
analyst.

Test automation specialists.
Someone with the ability to
write automated tests/checks.

 Supports the creation of automated regression tests,
which in turn enables teams to safely evolve their
solutions.

 Requires investment in the automated tests themselves,
which may appear expensive in the short term when it
comes to legacy assets.

Manual testers (from scripts).
Someone with the skill to
develop test cases from
requirements, write manual
test scripts, and follow test
scripts to identify and record
the behavior exhibited by the
solution under test.

 The solution is validated to some extent and supports a
structured approach to user acceptance testing (UAT).

 Very slow and expensive strategy for solution validation.

 Provides very poor support for agile software
development.

Test Teaming Strategy

We need to decide how testing and quality assurance (QA) professionals will work with—or
as part of—the delivery team so that everyone involved knows how the team(s) are organized.
Although a whole-team approach is preferred for Disciplined Agile teams, you can see in the
following table that there are other options available to us.

184

Options (Ordered) Trade-Offs

Whole team/embedded
testers. People with testing
skills are embedded directly
into the delivery team to test
the solution as it’s being
developed.

 Improved collaboration within the team, leading to greater
productivity and quality.

 Promotes the mindset that quality is the team’s
responsibility, not just the testers’/QA professionals’
responsibility.

 Enables people to learn from one another, helping them to
become more effective generalizing specialists.

 Can be difficult when we are first working in an agile
manner because we’re likely to have a lot of people with
specialized skills, requiring a larger team than we would
normally build.

Parallel independent test
team. An independent test
team works in parallel with
the delivery team to handle
the more difficult or
expensive testing activities.
Completed work is normally
passed to the independent
test team on iteration
boundaries but more
advanced testing teams can
accept new, completed items
at any time [PIT].

 Can fulfill regulatory requirements around independent
verification without requiring significant end-of-life-cycle
testing.

 Decreases the cost of some forms of test and fix, in
particular around integration, by reducing the feedback
cycle.

 Enables highly skilled testers, such as security testers or
exploratory testers, to focus on their specialty.

 Useful where the team does not have access to a
production-like environment, where it is difficult for the
team to test sophisticated transactions across systems such
as legacy integrations (e.g., end-of-month batch processing)
or where a traditional, cycle-based regression of test cases
is required.

 Increases complexity of the testing process (compared with
whole-team testing).

 Requires a strategy to manage potential defects discovered
by the independent testers.

 Can lengthen the Transition phase because we will need to
perform one last round of independent testing before we
can deploy.

 Complicates what it means to be “done.”

 When there are many teams delivering work to the
independent test team, there will likely be a need for
support by someone doing integration.

Independent test team. Some
testing activities, often user
acceptance testing (UAT)
and system integration
testing (SIT), are left to the
end of the life cycle to be
performed by a separate
team [PIT].

 Easy strategy for existing, traditional testers to adopt.

 Focuses UAT and SIT efforts toward the end of the
delivery life cycle, resulting in significantly more expensive
defect fixing.

 Lengthens the Transition phase substantially.

 Increases overall risk due to key testing activities being
pushed to the end of the life cycle.

 Increases average cost of fixing defects due to a long
feedback cycle.

185

Options (Ordered) Trade-Offs
External (outsourced) test
team. An independent test
team staffed by a different
organization, often in a
different time zone, typically
an IT service provider.

 The manual testing effort may be less expensive due to
wage differences.

 May be only way to gain access to people with testing skills.

 Requires significant (and expensive) requirements
documentation to be provided to the testing team, and
ongoing communication and management effort, negating
any cost savings from inexpensive testing staff.

 Lengthens the Transition phase substantially.

 Increases overall risk due to key testing activities being
pushed to the end of the life cycle.

 Increases average cost of fixing defects due to a long
feedback cycle.

Level of Detail of Test Plan

We need to identify the level of detail we require to capture our test strategy. The following
table compares several common approaches for doing so.

Options (Ordered) Trade-Offs

Outcome driven. A
high-level collection of
testing and quality
assurance (QA)
principles or guidelines
meant to drive the
team’s decision making
around testing and QA.

 Provides sufficient guidance to skilled team members.

 Insufficient guidance for low-skilled team members (they will
require coaching or help via nonsolo strategies).

 By itself it is insufficient for some regulations, particularly life-
critical ones, but can be part of the overall strategy.

Lightweight overview.
A concise description of
our test strategy,
potentially in point
form.

 Provides sufficient guidance for most team members.

 Often sufficient for regulatory environments.

 May not be read by senior team members who believe they
already know what to do.

Detailed specification. A
descriptive and
thorough test strategy
document.

 Provides sufficient guidance for outsourced/external testing
and for low-skilled team members.

 Very expensive to create and maintain.

 A high risk of getting out of sync with other team artifacts.

 Very likely to be ignored by skilled team members who believe
they know what to do.

None. The test strategy
is not captured.

 Appropriate for simple situations or in situations where we
have a standard testing infrastructure and a team experienced
at using it.

 Won’t be sufficient for most regulatory compliance situations.

 In outsourcing situations, leaves us at the mercy of the service
provider.

186

Test Approaches

We need to identify the general testing approaches/categories that we intend to follow so that
we know what skills people need and potentially to identify the type of test tools required.

Options (Not Ordered) Trade-Offs

Black box. The solution is
tested via its external interface,
such as the user interface (UI)
or application programming
interface (API) [W]. Note:
Acceptance criteria are
typically implemented at the
black-box level.

 Enables us to test a large percentage of scenarios.

 Can be a very good starting point for our testing efforts.

 Very common approach for database testing.

 Difficult to test internal components, or portions thereof.

 Often has a slow feedback cycle.

Clear box. The internals of the
solution are tested [W]. Also
known as white-box testing.
Note: Developer unit tests are
typically at the clear-box level.

 Potential to test all scenarios as we can get into the innards
of the solution. Note that by pairing testers together, we’re
more likely to avoid unnecessary scenarios.

 Requires intimate knowledge of the design and
implementation technologies.

Confirmatory. The validation
that the solution works as
requested. Sometimes called
“testing to the specification” or
positive testing [W].

 Confirms that we’ve produced what we said we would.

 Falsely assumes that our stakeholders are able to identify all
of the requirements.

 Test-driven development (TDD), and behavior-driven
development (BDD) are a confirmatory approach to testing.

 Can unfortunately motivate an expensive BRUF approach,
but does not require written specifications in practice.

Exploratory. An experimental
approach to testing that is
simultaneously learning, test
design, and test execution [W].

 Enables us to test for the things that the stakeholders didn’t
think of.

 Often identifies problems that would have escaped into
production (and are hence expensive to fix).

 Requires significant skill, so it can be hard to find exploratory
testers and may require a long time to grow.

Stakeholder validation. Our
stakeholders, in particular our
end users, validate how well the
solution meets their needs.

 Enables us to determine how effective our solution will be in
practice, providing valuable feedback that we can use to
improve the solution.

 Potential testing strategies include field testing, alpha/beta
testing, pilot testing, and user acceptance testing (UAT).

 Requires stakeholders to be actively involved with testing,
often throughout the life cycle.

187

Test Intensity

An important decision that needs to be made early on, albeit one that may evolve as we
understand our stakeholder needs better, is how much do we care about testing? The
fundamental issue is that the greater the complexity or risk that we face, the more testing
intensity or sophistication required. Interestingly, the greater the intensity of your testing
effort, the more effective it tends to be. The following table captures the potential intensity
levels that we may face.

Options (Ordered) Trade-Offs

Life critical. Our solution is very
high risk, with the potential to
adversely affect the health or
physical well-being of people. This
includes, but is not limited to,
medical devices, health-oriented
data processing, transportation
systems, and food processing
systems.

 Testing must be very thorough.

 Regulations exist that will guide the minimal-required
levels of verification and validation (V&V).

 Validation efforts will be thorough and potentially
time-consuming.

 There are likely to be comprehensive specifications,
ideally executable ones, which will need to be
validated.

 Sophisticated configuration management (CM)
control, with support for granular control of
configuration items (CIs), will be required.

Business critical. Our solution is
high risk, with the potential to
adversely affect the financial
health or public image of our
organization.

 Testing must be thorough.

 Regulations exist that will guide the minimal-required
levels of V&V.

 Specifications should ideally be executable, and the
portions thereof that describe high-risk aspects of the
solution will need to be validated.

 Robust CM will be required, with the ability to restore
previous versions of CIs.

Product critical. Our solution is
medium risk, with the potential to
adversely affect the overall
product or service offering.

 Testing will focus on the high-risk aspects of the
solution, with less thorough testing for less risky
aspects.

 Regulations, or at least organizational guidelines, may
exist to guide V&V.

 Simple CM control is likely sufficient.

Project critical. Our solution is low
risk, with potential adverse effects
being limited to the loss of the
investment in the team itself.

 Testing will focus on the high-risk aspects of the
solution, if any, with less thorough testing for less
risky aspects.

 Regulations, or at least organizational guidelines, may
exist to guide V&V.

 Simple CM control is sufficient.

188

Development Strategy

We need to identify how our team will approach development so that we know how to
properly staff the team with people who have testing and programming skills. This decision
point is also part of the Accelerate Value Delivery process goal (see Chapter 19).

Options (Ordered) Trade-Offs

Test-driven development
(TDD). A combination of test-
first programming (see below)
to add any new functionality
and refactoring to improve the
quality of existing functionality.
This includes developer TDD
and acceptance TDD
(ATTD)/behavior-driven
development (BDD) [W].

 See trade-offs with test-first programming.

 Refactoring supports a continuous approach to paying
down existing technical debt.

 Refactoring will slow down current work, but resulting
quality improvements will increase development
productivity and maintainability in the future and
potentially reduce overall cost.

Test-first programming (TFP).
The developer(s) write(s) one or
more tests before writing the
production code that fulfills
those tests. Sometimes called
test-driven programming [W].

 Drives the solution requirements (via acceptance tests)
and design (via developer tests) based on the requested
functionality.

 Produces detailed, executable design specifications while
supporting a confirmatory approach to testing.

 Enables the team to safely evolve their solution by
supporting automated regression testing.

 Results in better design by forcing team members to
think through design before committing to code.

 Ensures writing of unit tests is not “forgotten” or not
done due to time constraints.

 Requires significant discipline and skill among team
members.

 Requires ongoing maintenance of the tests, which may
slow down new work as the design evolves over time.

 May require significant investment in writing tests when
working with legacy software, although that can be
spread out over time and does not need to be done all at
once.

Test-after development. The
developer(s) write(s) some
production code, typically for a
few hours, then write(s) the
test(s) that validate that the code
works as requested.

 Easier for the team to get going with regression testing
as it requires less discipline than test-first approaches.

 Requires testing skills within the team.

 May result in more bugs compared to TFP or TDD.

 Test-code coverage tends to be less as compared with
TFP or TDD.

 Lengthens the feedback loop (compared with TFP and
TDD).

 May require significant investment in writing tests when
working with legacy software.

189

Options (Ordered) Trade-Offs
Testless programming. The
developer(s) write(s) some code
then provide(s) it to someone
else to validate.

 Potential starting point for teams made up of specialists
(i.e., some team members are programmers, others just
focus on testing).

 Often supports a slow, mini-waterfall approach to
development.

 Motivates longer iterations as result of mini-waterfall.

 Motivates less-effective testing strategies (i.e., manual
testing).

 Results in more expensive fixing, on average, due to
increased feedback cycle.

Test Environment(s) Platform Strategy

We need to identify our strategy or strategies for how we intend to deploy new test platforms
or, better yet, leverage existing test platforms.

Options (Ordered) Trade-Offs

Cloud based. The test
environment is hosted in a
private or public cloud
environment.

 Potential for very efficient use of test platform resources.

 Potential for quick and easy access to testing platforms on an
as-needed basis.

 Good fit for project-based development because the
environment can be run for a period required by the team.

 A private cloud environment will need to be maintained, or a
public cloud environment contracted for and operated.

 May not be possible to fully approximate production.

 There may be data sovereignty issues with public clouds.

 There may be security and data tenancy concerns with public
cloud offerings.

Physical. Separate hardware
and software is provided for
testing.

 Provides greatest opportunity to approximate production.

 With a project-based approach to development this can be
expensive to set up and then tear down.

 Testing environments are often underfunded and difficult or
slow to access for development teams (injecting bottlenecks
into our process).

Virtual. Virtualization
software is used to provide a
test environment.

 Very flexible way for multiple teams to share physical testing
environments.

 It may not be possible to fully approximate our production
environments.

 We will still need a physical environment available where the
virtual environment(s) can run.

190

Test Environment(s) Equivalency Strategy

We need to identify our approach to how close the test environments will represent
production environments. In general, the closer to production an environment is, the better
the quality of the testing it enables, but the more expensive it is. The following table captures
several common options available to us.

Options (Ordered) Trade-Offs

Production equivalent. The test
environment is an exact, or at
least very close, approximation
of production. This includes
both identical hardware and
software configurations
compared with what is available
in production.

 Provides the greatest level of assurance.

 Enables a hot switchover (blue/green) deployment
strategy (see Deploy the Solution in Chapter 21).

 Usually prohibitively expensive and therefore an
unrealistic strategy.

 Appropriate for preproduction test environments in
high-risk situations.

Production approximate. A
test environment built using
significantly less hardware, and
sometimes less capable versions
of software, than what is
currently available.

 Our tests will miss production problems, risking very
expensive fixes later on.

 Requires significantly less investment.

 Appropriate for team integration test environments
and preproduction test environments for low-risk
situations.

Disparate. The testing
environment is significantly
different than production.
Disparate test environments are
often built using inexpensive
hardware or are simply a
partition on a developer’s
workstation.

 Very inexpensive testing environments.

 Appropriate for developer workstations.

 Very poor at finding integration problems due to poor
approximation of production.

Quality Requirements Testing Strategy

We need to identify our approach(es) to validating quality requirements, also known as quality
of service (QoS) or nonfunctional requirements, for our solution [W]. A critical thing that our
team needs to do is to work with our stakeholders to define what quality means to them—
quality is in the eye of the beholder. Quality requirement categories include, but are not limited
to, the options listed in the table below. It is important to note that most of these testing
strategies require an explicit skill set and special tooling to perform.

Options (Not Ordered) Trade-Offs

Accessibility. Ensure that
our solution is usable by
people with challenges
such as color blindness,
blindness, hearing loss, old
age, and other potential
disabilities [W].

 Respects and supports the full range of our potential user
base, increasing the inclusivity of our solution.

 Typically requires access to people with those disabilities, or
at least intimate knowledge of those disabilities, to perform
the testing.

 Often an afterthought for many teams, leading to expensive
changes to address accessibility problems.

191

Options (Not Ordered) Trade-Offs
Availability. Ensure service
reliability and our
solution’s fault tolerance
(the ability to respond
gracefully when a software
or hardware component
fails) [W].

 Ensures that our solution fulfills availability and reliability
requirements.

 Often requires long-running tests.

 May require production monitoring functionality built into
our solution (which is likely wanted to support DevOps
anyway).

Concurrency. The aim is to
detect problems around
locking, deadlocking,
semaphores, and single-
threading bottlenecks.
Sometimes called multiuser
testing.

 Ensures that our solution works when many simultaneous
users are working with it.

 Often requires long-running, complex tests.

Data privacy. Ensures that
people have access to only
the data, no more and no
less, than they have the
right to access [W].

 Discovers data privacy/access problems before they occur.

 Data privacy testing requires a deep understanding of the
access rights of the roles supported by the solution as well
as appropriate regulatory compliancy.

 The ability to create, read, update, or delete given data may
vary by role. For example, we can see our salary but not
update it.

Internationalization.
Ensures that our solution
supports multiple
languages and cultures,
often referred to as locales.
Sometimes called
localization, I18n, or
globalization [W].

 Increases the potential market or user base for our solution.

 Requires someone who understands each locale to be
supported by the solution.

 Increases the burden of manual testing as each locale will
potentially need to be tested.

Performance. Determines
the speed or effectiveness
of our solution or portion
thereof [W].

 Discovers performance problems before our solution is
released into production.

 May require significant amounts of test data, data that may
need to be generated or copied from production (with
privacy issues addressed accordingly).

Resilience/reliability.
Determines whether our
solution will continue to
operate over the long term
[W].

 Ensures that our solution will operate for a long period of
time.

 Often requires long-running tests used to detect memory
leaks.

 May require production monitoring functionality built into
our solution (which is likely wanted to support DevOps
anyway).

192

Options (Not Ordered) Trade-Offs
Scalability. Ensures that
the solution will meet or
exceed the demands placed
upon it by the growing
needs of our user base [W].

 Identifies potential limits to usage of our solution, and more
importantly, identifies the criteria to detect when we will
need to extend or refactor the architecture once the solution
is in production.

 Requires an understanding of the architecture.

 Difficult in practice because it requires a prediction of the
expected usage patterns of end users. Note that usage
patterns are much easier to predict when we already have a
version running in production.

Security. Typical security
issues include
confidentiality,
authentication,
authorization, integrity,
and nonrepudiation [W].

 Discovers security problems before they occur, perhaps via
penetration testing via third-party “ethical hackers.”

 Security testing often requires deep expertise in security and
potentially expensive testing tools.

Usability. End users are
asked to perform certain
tasks to explore issues
around ease of use, task
time, and user perception
of the experience [W].

 Discovers usability problems while they are still relatively
easy to address.

 Usability testing often requires deep experience in user
experience (UX) and design skills.

 Requires access to potential end users or development of
realistic personas.

Volume/rate. Determines
that our solution will
perform properly under
heavy load or large
volumes of data.
Sometimes called load
testing or stress testing
[W].

 Ensures that our solution works under heavy load.

 May require significant amounts of test data, data that may
need to be generated or copied from production (with
privacy issues addressed accordingly).

Choose Testing Types

An important question that we need to answer is what types of testing will we need to perform
while building our solution. The agile testing quadrants of Figure 12.4, modified from Marick
and Gregory and Crispin [Marick, GregoryCrispin], overview some potential types of testing
that we should consider adopting within the team. The following table overviews and
contrasts these strategies.

193

Figure 12.4: The agile testing quadrants.

Options (Not Ordered) Trade-Offs

Accessibility testing. A subset of
user experience (UX) testing
where the focus is on ensuring
that people with accessibility
challenges, such as color
blindness, vision loss, hearing
loss, or old age can work with the
solution effectively [W].

 Helps to ensure our solution addresses appropriate
regulatory issues regarding accessibility.

 Requires skills and knowledge around accessibility
issues and design thinking.

 Often requires collaboration with people who have
accessibility challenges.

Alpha/beta/pilot/canary testing.
Tests in production with a subset
of the overall user base. Alpha,
beta, and pilot testing are typically
a full release of the system to a
subset of users. A canary test is
typically a release of a small subset
of functionality to a subset of
users [W].

 Increases the chance you will build what
stakeholders want by getting feedback based on
actual usage.

 Limits the impact of a poor release to just the
subset of users.

 Requires the solution be architected to limit access
to a subset of users.

 In the case of alpha, beta, and pilot testing, people
will likely need to be informed that they are
involved with such a release.

194

Options (Not Ordered) Trade-Offs
Component testing. Tests a
cohesive portion of the overall
solution in isolation. A
“component” may be a web
service, microservice, user
interface (UI) component,
framework, domain component,
or subsystem. This is a
combination of unit testing and
system integration testing, where
the component is simultaneously
the unit and the system under test
[W].

 Limits the scope of your testing effort, enabling
you to focus on that specific functionality.

 A form of functional testing that determines how
well a component works in isolation.

 Does not determine how well a component will
work when integrated with the rest of the
solution/environment.

Database testing. Databases are
often used to implement critical
business functionality and shared
data assets and therefore need to
be validated accordingly. Also
called data testing [W].

 Ensures that data semantics are implemented
consistently within a shared database.

 Identifies potential problems with data sources
before production usage.

 Database tests are often written as part of
application testing efforts, thereby increasing the
chance that localized data rules are validated rather
than organization-wide rules.

 Automated regression test suites for the data
source itself are required to ensure data consistency
across systems.

 Difficult to find people with database testing skills
because few existing data professionals have
database testing skills, and few application
developers understand the nuances of databases.

Exploratory testing. An
experimental approach to testing
that is simultaneously learning,
test design, and test execution
[W].

 Finds potential issues that would otherwise have
slipped into production, thereby reducing the
overall cost of addressing the problem (see Figure
12.3 earlier).

 Requires highly skilled testers who are good at
exploring how something works.

 Expensive form of testing that is mostly manual,
but the learning part can often be the most efficient
way to discover things quickly.

Functional testing (FT). Tests
the functionality of the solution as
it has been defined by the
stakeholders. This is a form of
black-box testing. Sometimes
called requirements testing,
validation testing, or testing
against the specification [W].

 Validates that what we’ve built meets the needs of
our stakeholders as they’ve communicated them to
us so far.

 The requirements often change, implying that our
automated functional tests will need to similarly
evolve.

 Behavior-driven development (BDD) and test-
driven development (TDD) strategies support FT
very well.

195

Options (Not Ordered) Trade-Offs
Performance testing. Testing to
determine the speed/throughput
at which something runs, and
more importantly where it breaks.
This is a form of quality attribute
(ility) testing. Sometimes called
load or stress testing [W].

 It can demonstrate that our solution meets
performance criteria.

 It can compare two or more solutions to determine
which performs better.

 It can identify which components of the solution
perform poorly under specific workloads, enabling
us to identify areas that need to be refactored.

 Performance testing is highly dependent upon the
robustness of our test environment, the implication
being that we may need to make significant
investment to test properly.

 Test results are short lived in that they are
potentially affected by any change to the
implementation of the system.

Prototypes. A prototype of the
solution is developed so that
potential end users may work with
it to explore the design. The
prototype typically simulates
potential functionality [W].

 Enables the team to explore the user interface (UI)
design without investing significant effort to build
it.

 Very effective when it isn’t clear how to approach
one or more aspects of the design.

 Potential to reduce the feedback cycle by getting
prototyped functionality into the hands of
stakeholders quickly.

 Requires investment in the development of
“throw-away” prototype code, which can be seen
as a waste.

Quality attributes (ility)
testing. The validation of the
solution against the quality
requirements, also called quality of
service (QoS) requirements or
nonfunctional requirements
(NFRs). Figure 12.5 summarizes
categories of potential quality
requirements [W].

 Because quality requirements drive critical
architecture strategies, this is a critical strategy to
ensure that our solution’s architecture meets the
overall needs of our stakeholders.

 Quality attributes apply across many functional
requirements, making testing difficult.

 Requires automated regression testing to ensure
compliancy as the functionality evolves.

Security testing. Testing to
determine if a solution protects
functionality and data as intended.
This includes confidentiality,
authentication, authorization,
availability, and nonrepudiation.
Security testing is a form of quality
attribute (ility) testing [W].

 Helps to identify potential security holes in our
solution.

 Security testing is a sophisticated skill.

 Commercial security testing tools are often
expensive.

196

Options (Not Ordered) Trade-Offs
Simulations. Simulation software,
sometimes called large-scale
mocks, is developed to simulate
the behavior of an expensive or
risky component of the solution
[W].

 Common approach when the component or
system under test involves human safety, or when
the component is not available (perhaps it is still
under development), or when large amounts of
money are involved (such as a financial trading
system).

 Enables the team to test aspects of their solution
early in the life cycle because they don’t need to
wait for access to the actual component that is
being simulated.

 Can be expensive to develop and maintain the
simulator.

 You’re not testing against the real functionality.

 The results from testing are only as good as the
quality of the simulation.

Split (A/B) testing. We produce
two or more versions of a feature
and put them into production in
parallel, measuring pertinent
usage statistics to determine
which version is most effective.
When a given user works with the
system they are consistently
presented with the same feature
version each time, even though
several versions exist [W]. This is
a traditional strategy from the
1980s, and maybe even farther
back, popularized in the 2010s by
Lean Startup.

 Enables us to make fact-based decisions on actual
end-user usage data regarding what version of a
feature is most effective.

 Supports a set-based design approach (see Explore
Solution Design below).

 Increases development costs because several
versions of the same feature need to be
implemented.

 Prevents “analysis paralysis” by allowing us to
concretely move on.

 Requires technical infrastructure to direct specific
users to the feature versions and to log feature
usage.

Story testing. This is a form of
functional testing (FT) where the
functionality under test is
described by a single user story.
Can be thought of as a form of
acceptance testing when a
stakeholder representative, such
as a product owner, performs it.

 Validates that we’ve implemented the story as
required by our stakeholders.

 The details of the story will evolve over time,
implying that our automated tests will need to
similarly evolve.

 Danger that this is effectively component testing
for a story—cross-story integration testing will still
need to be performed, such as workflow/scenario
testing.

System integration testing
(SIT). Testing that is carried out
across a complete system, the
system typically being the solution
that our team is currently working
on [W].

 Requires skill and knowledge on the part of the
person(s) doing the testing.

 Integration tests can be long running and often
must be run in their own test suite.

 Integration testing requires a sophisticated test
environment that mimics production well.

197

Options (Not Ordered) Trade-Offs
Unit testing (UT). Testing of a
very small portion of
functionality, typically a few lines
of code and its associated data
[W]. Sometimes called developer
testing, particularly in the scope of
test-driven development (TDD).

 Many developers still need to gain this skill (so pair
with testers).

 Ensures that code conforms to its design and
behaves as expected.

 Limited in scope but critical, particularly for clear-
box testing.

User acceptance testing
(UAT). The solution is tested by
its actual end users to determine
whether it meets their actual needs
(which may be different than what
was originally asked for or
specified). UAT should be a flow
test performed by users [W].

 Provides valuable feedback based on actual usage
of the solution.

 Expensive because it is performed manually.

 Very expensive form of regression testing (you’re
much better off automating regression tests).

 Requires stakeholder participation, or at least
stakeholder representatives such as product
owners.

 Often repeats FT efforts, so potentially a source of
process waste.

User experience (UX) testing.
Testing where the focus is on
determining how well users work
with a solution, the intention
being to find areas where usage
can be improved. Sometimes
called usability or consumability
testing [W].

 Requires UX skills and knowledge that are difficult
to gain.

 May require significant investment in recording
equipment and subsequent review of the
recordings to identify exactly what people are
doing.

 Enables us to determine how the solution is used
in practice, and more importantly, where we need
to improve the UX.

User interface (UI) testing.
Testing via usage of the user
interface. This can be performed
either manually or digitally using
UI-based testing tools. Sometimes
called glass testing or screen
testing [W].

 Straightforward step to move from manual testing
to automated testing because the manual test
scripts can be written as automated UI tests.

 Expensive way to automate functional testing (FT),
even given record/playback tools.

 Tests prove to be very fragile in practice.

 Difficult to maintain automated tests because the
tests break whenever the user interface evolves.

Workflow/scenario testing.
Testing where the focus is on
determining how well a solution
addresses a specific business
workflow or usage scenario. A
scenario is described to one or
more end users and they are asked
to work through that scenario
using the solution. This is a form
of UX testing [W].

 We need to have an understanding of the overall
workflow, which typically goes beyond stories and
even epics.

 See the trade-offs associated with UX testing.

198

Figure 12.5: Potential categories of quality requirements.

Test Suite Strategy

We need to identify the approach that we’re taking to organize our test suites so that we know
how the regression test tools need to be configured. Important issues to consider are the
amount of time that regression tests take to run and where in our WoW we are running the
tests. For example, the regression test suite that runs on my workstation when I commit code
needs to run in a few minutes, whereas a test suite that runs at night on our team integration
server could run for many hours.

Options (Ordered) Trade-Offs

Multiple regression test
suites. There are several
regression test suites, such
as a fast-running suite that
runs on developer
workstations, a team
integration suite that runs
on the team integration
sandbox (this suite may
run for several minutes or
even hours), a nightly test
suite, and even more.

 Enables quick test suites to support team regression testing.

 Supports testing in complex environments.

 Supports the running of test suites on different cadences (run
on commits, run at night, run on weekends, etc.).

 Requires several testing environments, thereby increasing
cost.

 Requires strategy for deploying across testing environments.

 Often requires defect reporting strategy.

Single regression test
suite. All tests are invoked
via a single test suite.

 Supports testing in straightforward situations.

 Requires creation and maintenance of a test environment.

Manual testing. Tests are
run manually, often by
someone following a
documented test script.

 Appropriate for very simple systems.

 Very ineffective for regression testing (automate our tests
instead).

 Very slow and expensive.

 Does not work with modern iterative and agile strategies.

199

Test Data Source

We need to identify our approach to obtaining test data to support our testing efforts.
Obtaining test data can be a tricky issue, particularly given privacy and sovereignty issues, and
engineering data requires skill. As shown in the following table, there are several options for
sourcing test data.

Options (Not Ordered) Trade-Offs

Original production data.
A copy, often a subset, or
actual “live” data may be
used.

 Easy source of accurate test data.

 Subsets of production data are protected by privacy
regulations such as Health Insurance Portability and
Accountability Act (HIPAA) in the United States.

 Current production data may not cover all test
scenarios.

 Often too much data, requiring us to take a subset of it.
Masked production data.
Original production data
are used, where some data
elements, typically data
that can be used to identify
an individual or
organization, are
transformed into
nonidentifying values (this
is called obfuscation).

 Easy source of accurate test data with privacy concerns
addressed.

 Current production data may not cover all test
scenarios.

 Often too much data, requiring us to take a subset of it.

Generated data. Large
amounts of test data, often
with random data values,
are generated.

 Very effective for volume testing.

 Very ineffective for anything other than volume testing
unless the generated data are also engineered.

Engineered data. Test data
are purposefully created to
provide known values to
support specific scenarios.

 Potential to cover all testing scenarios.

 Many problems that we haven’t predicted occur with
production data.

Service/source
virtualization. Application
of mock or simulation
software to enable testing
of difficult-to-access
solution components (i.e.,
hardware components or
external systems).

 Simulates systems that we cannot safely or economically
test.

 May not fully simulate the actual system.

 We still need to test against the actual system.

200

Test Automation Strategy

We need to determine the level of automation we intend to implement for our test, and
possibly deployment suites, so that we know which tools’ support we need and what our
team’s potential ability to evolve the solution will be. Note that test automation requires the
people writing the tests to have the skills and appropriate mindset to do so. A significant
challenge for many teams moving to Disciplined Agile ways of working is to help bring such
skills and the appropriate mindset into the team as it requires investment and time to do so.

Options (Ordered) Trade-Offs

Continuous deployment
(CD). When the
solution is successfully
integrated within a given
environment or
sandbox, it is
automatically deployed
(and hopefully
automatically integrated
via CI) in the next level
environment [W].

 Automates “grunt work” around deployment.

 Supports regression testing in complex environments.

 Enables the continuous delivery life cycles.

 Requires investment in CD tools.

Continuous
integration (CI).
When something is
checked in, such as a
source code file or
image file, the solution
is automatically built
again. The changed code
is compiled, the solution
is integrated, the
solution is tested, and
code analysis is
optionally performed
[W].

 Automates “grunt work” around building the solution.

 Supports regression testing in each of our test environments.

 Important step toward continuous delivery.

 Key enabler of agile solution delivery.

 Requires investment in CI tools.

Automated regression
tests. Automated tests
are written to ensure
that a given percentage
of the source code is
invoked.

 Enables teams to run their regression tests regularly, often
many times a day. This in turn enables them to safely evolve
their solution with the knowledge that they will be able to
detect potential problems.

 Requires significant skill and discipline to write the tests and
keep them up to date as the requirements evolve.

 Requires investment in paying down the technical debt of
writing any missing tests that should have been developed in
the past but unfortunately were not.

 Can be difficult to write automated tests at the user interface
(UI) level, particularly when the UI is rapidly evolving or is
graphically complex, without code automation tools.

201

Options (Ordered) Trade-Offs

Scripts. One or more
scripts are manually run
to build the solution.

 Important step toward CI (we need the scripts for our CI
tool[s] to invoke).

 Overhead of running the scripts means team members will
do it less often, leading to longer feedback cycles.

Manual testing. Test
scripts for manually
performed tests are
developed with the goal
of validating certain
portions of the solution.

 Often used to validate complex UI functionality.

 Manual testing is expensive and slow in practice, thereby
reducing a team’s ability to regression test continuously.

Test Automation Coverage

An important consideration regarding automated regression testing is how we intend to
approach it, or in other words in what levels of the testing pyramid (see Figure 12.2 above)
will we automate our tests?

Options (Ordered) Trade-Offs

Multiple systems. Tests
invoke functionality, or use
data from multiple systems to
determine whether they work
together as expected. A form
of black-box testing at the
production level.

 Reduces the risk that a new release of our solution into
production will adversely affect other systems within
our organizational ecosystem.

 Effectively integration tests for our production
environment.

 Enables us to release into production more often.

 Requires a sophisticated, and potentially expensive,
approximation of our production environment.

Solution. Tests are written
to ensure that our solution
works as expected. A form of
black-box testing at the
system level. Also known as
end-to-end tests.

 Helps to verify that our solution meets the high-level
requirements and expectations of our stakeholders.

 Effectively integration tests for the solution.

 Solution-level tests are an important part of the
executable requirements specification for a solution.

 Typically confirms architecture-level requirements and
decisions.

 Requires an understanding of the requirements for the
overall solution.

Service/application
programming interface
(API). Tests are written to
ensure that services or API
calls work as expected within
the context of our solution. A
combination of clear-box
testing (within the solution)
and black-box testing (of the
services/API).

 Helps to verify that the services/API work as desired.

 Effectively integration tests for the services/API.

 These tests form an executable specification for the
services/API.

 Typically validates design-level decisions.

 Requires an understanding of the design and
requirements for it, in particular the semantics of the
data being passed/returned.

202

Options (Ordered) Trade-Offs
Component. Tests are
written to validate that
components/subsystems of
our solution work as
expected. A component may
be internal to a solution or
part of the external user
interface (UI) [W].

 Helps to verify that the component works as desired.

 Effectively integration tests for the component.

 These tests form an executable specification for the
component/subsystem.

 Typically validates design-level decisions.

 Requires an understanding of the requirements for the
component.

Unit. Tests are written that
directly invoke our source
code, often using the xUnit
test suite. A form of clear-
box testing. Sometimes called
developer tests [W].

 Helps to verify that the “unit” we are building—an
operation/function or part of one—works as desired.

 Tends to be the fastest automated tests.

 Often the easiest types of tests to maintain when
requirements are evolving.

 These tests form an executable design specification for
the service, component, or solution under test.

 Typically validates design-level decisions.

 Requires an understanding of the design of the unit that
we’re testing.

User interface (UI). Tests
are written that invoke the
UI, often simulating the
interactions that an end user
would have with the solution.
Sometimes called glass
testing [W].

 Helps to validate that the UI exhibits the desired
behavior.

 These tests form an executable requirements
specification for a solution, or even a collection of
solutions (when used for production-level integration
testing).

 Typically validates requirements or UI-design
decisions.

 UI tests can be very fragile when they are implemented
in black-box fashion (often via record-and-playback
tools), but are less fragile when implemented via clear-
box test tools (such as Jasmine for JavaScript testing).

 Danger of being overapplied, particularly by
organizations that are moving away from specification-
based manual testing, to (sort of) replace testing that is
better done via the strategies defined above.

Defect Reporting

We need to identify how we intend to report/record defects, if at all, so that the team knows
how they will do so and what tools they will require. Defects found by the team during
Construction are typically not tracked, they are instead fixed on the spot, although defects that
escape the team and are caught by independent testing or found in production are tracked,
particularly in financial or life-critical situations. Tools can be a contentious issue as existing
quality professionals are likely to have their preferred tools, whereas agile teams have different
preferences. Our advice is to optimize the overall workflow and not just locally optimize
portions of it. Consider the larger picture for defect reporting.

203

Options (Ordered) Trade-Offs

Conversation. The
defect is reported to
the appropriate
developer(s) by
speaking to them.

 Fast and efficient way to communicate the issue.

 Even with the other options listed below, there is very likely
always a need for the person who found a potential issue to
be available to explain it to the person fixing it.

 Not sufficient if we require documentation about the defect
(for contractual reasons or for regulatory reasons).

 Does not support defect-tracking measurements.
Operational
monitoring. Tools that
track/log end-user
usage of a solution.
Sometimes called a
crash analytics tool.

 Helps teams to identify the cause of potential
problems/defects.

 Provides real-time, operational intelligence to developers to
help identify what functionality is being used in practice.

 Supports Exploratory life cycle and experimentation
practices such as canary testing and split (A/B) testing.

 Requires architectural scaffolding for event logging.

 Potential for performance degradation due to logging.
Agile management
tool. A management
tool such as Atlassian
Jira, Jile, or
VersionOne is used to
document and report
the defect and then
add it as a work item
for the team.

 Developers are likely already using such a tool to manage
their other work items.

 Defects can be easily treated as a work item type.

 Supports defect tracking and reporting.

 Existing testers may not be familiar with these tools.

 Test teams that have to support a multimodal IT department
may need to use different tools to report defects back to
different teams.

Bug/defect tracker. A
defect tracker, such as
Bugzilla or QuickBugs,
is used to document
and report the defect.

 Specific tools, including reporting, around defect tracking
offer potential for best of breed (for silo work).

 Possible to track quality metrics such as escaped defects into
independent testing or production.

 Requires the team to adopt one more tool.

 May not integrate well, if at all, with any agile work
management software being used.

 May make it harder to make all work visible due to
integration challenges.

Test management tool.
A test management
tool such as HP
Quality Center/ALM
is used to document
and report the defect.

 Existing testers will be familiar with existing test
management software.

 Possible to track quality metrics such as escaped defects.

 Test management tools often automate unnecessary
traditional test management bureaucracy.

 Requires the team to adopt one more tool.

 May not integrate well, if at all, with any agile work
management software being used.

 May make it harder to make all work visible.

204

Quality Governance Strategies

We need to identify the quality strategies that the team intends to adopt to govern the quality
of the work they will produce. Quality governance typically focuses on examining the
proof/evidence that the artifacts created by the team are of sufficient quality.

Options (Ordered) Trade-Offs

Nonsolo work. People
work together via
practices such as
pairing, mob
programming, and
modeling with others.

 Enables knowledge, skill, and information sharing between
team members.

 Potential defects/issues are found, and hopefully addressed,
at the point of injection, leading to higher quality and a lower
cost of defect removal.

 Development can be a bit slower and more expensive than
people working alone (although this is often more than made
up for in the lower cost of addressing defects).

Tool-generated
metrics. Our
continuous integration
(CI) tools can provide
important
development
intelligence regarding
the quality of our work.
CI tools include the CI
server itself, automated
regression testing tools,
code analysis tools, and
schema analysis tools.

 The tools generate critical information such as build status,
test status (pass/fail), code quality metrics, security ratings,
and data quality metrics that can be captured and reported
on in real time.

 Improved information enables the team to make better
decisions and thereby to self-organize more effectively.

 Improved information enables leadership to govern more
effectively.

 Requires investment in data warehouse (DW) and business
intelligence (BI) technologies to capture and report the
information.

Automated
code/schema
analysis. Code analysis
tools such as CAST and
SonarQube are used to
either statically or
dynamically evaluate
the source code or
database schema to
identify potential
quality problems.

 Automates a lot of the “grunt work” of code reviews.

 Potential to find a very wide range of common defect types.

 Effective way to ensure common coding conventions are
followed.

 Not all potential defects can be found automatically.

Quality guidelines.
Quality guidelines—
including but not
limited to code quality,
data quality, and
documentation
quality—are shared
with delivery teams.

 Simple way to capture common values and principles to
motivate improved quality and consistency.

 Captures common, cross-team attributes for definition of
done (DoD) [Rubin].

 Some developers require detailed instructions (so codify
them with code-analysis tools).

205

Options (Ordered) Trade-Offs

Informal reviews.
Work is reviewed and
feedback is provided,
often in a
straightforward
manner.

 Great technique for sharing skills, promoting common
values within the team, and for finding potential defects.

 May be sufficient for some regulatory compliance situations.

 Longer feedback cycle than automated code analysis or
nonsolo strategies.

Formal reviews. Work
is reviewed in a
structured manner,
often following defined
procedures.

 Supports some regulatory compliance requirements.

 Long feedback cycle.

 Can require significant planning and documentation
overhead.

Test case
documentation. Test
cases, particularly
manual test cases, may
be captured as static
documentation (instead
of as automated tests).

 This is better, usually, than not capturing test cases.

 Written test cases provide governance people with potential
insight into the testing approach being taken by the team.

 Test case documentation suffers from the CRUFT
challenges associated with all forms of documentation (see
the Accelerate Value Delivery process goal in Chapter 17).

 Test case documentation can be expensive to write and
maintain.

207

13 DEVELOP COMMON VISION

The Develop Common Vision process goal, shown in Figure 13.1, provides options for how
we will come to, and communicate, a common vision about the purpose of the team. An initial
vision for this team was very likely developed
by our product management team (if we have
one) and prioritized by our portfolio
management team (if we have one) long before
our team started Inception. This initial vision is
a starting point for us, effectively forming a
high-level promise to our stakeholders that was
sufficiently compelling for them to provide the
funds required to initiate, or bring new work
to, our team. Now we need to explore and
evolve this vision in sufficient detail. There are
several reasons why this is important:

 Our stakeholders want to know
what they’re going to get. Chances
are very good that our stakeholders
will want to know what we’re going to
do, how we’re going to do it, how
much it will cost, and how long it will
take. We will need to provide them
with plausible answers to those questions if we hope to have Construction funded.

 Our team should have purpose. In Drive: The Surprising Truth About What Motivates
Us (2011), Daniel Pink argues that autonomy, mastery, and purpose are what motivate
people. One aim of this process goal is to come to an agreement about what we hope
to achieve as a team. Note that the Coordinate Activities process goal, see Chapter
23, enables autonomy and the Grow Team Members process goal, see Chapter 22,
provides opportunities for gaining mastery.

 Our team should agree on how we’re going to proceed. As a team, we should
agree on what we’re supposed to be producing and how we’re going to do so. This is
particularly important when people are working at different locations or when the
team is large and organized into subteams.

 We want to capture key decisions. Early in the life cycle, we often make important
promises about the projected business benefits, the payback period, the scope, and
even the technologies to be used or supported. We should strive to fulfill the promises
that we make, and disciplined teams (and stakeholders for that matter) will track
progress against them.

 We want to stay on track. Having a vision in place, particularly one that is
sufficiently captured/documented, provides the team with something to check
against during Construction. Some people like to call this a guiding “North Star.”
When we allow the requirements to evolve over time, when the design evolves in
step, and when our plan similarly evolves, it is easy to get off track and start going in
a different direction. Throughout Construction, the team should ask itself if they’re
still heading in the direction they said they would, and if not, then either adjust the
direction or the vision accordingly.

Key Points in This Chapter

 We may wish to capture our findings
in Inception and review them with
our stakeholders to obtain
agreement on the vision.

 A vision statement typically includes
traditional elements of a project
charter, albeit in lightweight fashion,
such as scope, schedule, budget,
risks, and other supporting
information.

 A vision statement as a summary of
our Inception work can be an
extremely effective way to get all
stakeholders on the same page with
regard to the expected outcome of
our initiative.

208

Figure 13.1: The goal diagram for Develop Common Vision.

To be effective, we need to consider several important questions:

 What strategy will we follow to develop the vision?

 How are we going to capture the vision?

 How much detail must we capture?

 What level of agreement must we come to with our stakeholders before we can move
into Construction?

 What level of formality must we use for this agreement?

 How will we communicate the vision with our stakeholders?

Vision Strategy

We need to identify who will be responsible for developing the vision. Preferably, this should
be a collaborative effort between the team and its stakeholders, but as you can see in the
following table, there are several other less attractive options as well.

Options (Ordered) Trade-Offs

Collaborative. Business and
IT work together to develop a
shared vision.

 This is the ideal situation when both business
stakeholders and the IT delivery teams have a stake in
the vision.

 Can be difficult to get key stakeholders to be actively
involved.

Stakeholder driven. The
stakeholders drive the vision
for the initiative(s).

 The stakeholders may not have an understanding about
what is truly possible so the vision may not be practical.

 The delivery team may not accept a vision that is
handed to them, particularly the technical and schedule
aspects of it.

209

Sponsor driven. The people
with the money or authority
define the vision.

 Decision making is easier when the ones sponsoring the
initiative are driving it.

 Often sponsors are not close enough to the
stakeholders to adequately understand their detailed
needs.

 The delivery team may not accept a vision that is
handed to them.

Team driven. The delivery
team defines the vision.

 The vision can often be developed very quickly.

 The team will very likely identify a vision that the
stakeholders won’t accept.

 Might be appropriate in rare circumstances if the team
is an expert in the domain and it is not possible to
obtain feedback from the stakeholders.

Capture the Vision

We need to identify how we are going to capture the vision. This decision is often driven by the
expectations of our stakeholders, and when an organization is new to agile the expectations are
often geared toward the heavier, less effective options. The implication is that we may need to
negotiate a better option, and as you see in the table below there are several choices available.

Options (Ordered) Trade-Offs

Expected outcomes. We
capture the vision as high-level
outcomes that describe what
we intend to achieve rather
than how we intend to achieve
it.

 Provides direction to the team while providing
sufficient flexibility for them to find the best way to
delight their customers.

 Requires strong trust between the team and
stakeholders.

 Works well with experienced, long-standing teams.

 Opportunity for differing opinions as to how the
outcomes will be achieved, requiring significant
coordination and collaboration between people during
Construction.

Business canvas. Captures critical
information about the endeavor,
potentially including the expected
outcomes, a summary of the
scope, the sponsor(s), and why
the endeavor is important to the
organization.

 Straightforward, text-based planning/strategy artifact.

 Provides an excellent summary of the endeavor, and
can be an important information radiator moving
forward.

 Requires a facilitated planning session to develop (see
the Coordinate Activities process goal in Chapter 23).

Vision statement. A summary
of key information about the
initiative, typically overviewing
the plan, architecture, scope,
and teaming strategy.

 Often documented in a concise manner, perhaps as
several slides in a presentation deck or on wiki pages
containing key diagrams and points, making it easy to
maintain over time.

 Provides stakeholders with concise but sufficient
documentation of the vision, thereby increasing their
confidence in the team.

 Usually sufficient for regulatory compliance.

210

Options (Ordered) Trade-Offs
Business case. An exploration
of whether the initiative, often
a project, makes sense from
economic, technical,
organizational, and operational
points of view [W].

 Forces the team and stakeholders to think through the
viability of their strategy.

 Often required by traditional-leaning governance
strategies, but often proves to be a work of fiction that
is rarely consulted in practice.

 Usually sufficient for regulatory compliance.

Project/team charter. A
detailed overview of key
information about the
initiative, potentially including
the plan, architectural strategy,
scope, teaming strategy,
process, expected deliverables,
and more [W].

 Typically motivates too much modeling and planning
early in an initiative, increasing cost, time to delivery,
and very often overall risk.

 Often required by traditional-leaning governance
strategies, but often proves to be a work of fiction that
is rarely consulted in practice.

 Often more than what is needed for regulatory
compliance.

Level of Detail of the Vision

We need to decide what level of detail to capture in the vision. Because less is generally more,
we should strive to keep the amount of documentation we create sufficient for our needs and
no more [AgileDocumentation]. In other words, follow common agile-documentation
strategies for capturing the vision. Timeboxing an Inception phase is a good way to avoid the
trap of going into too much detail, which is sometimes referred to as waterscrumfall, wagile,
or even scrumifall.

Options (Ordered) Trade-Offs

Lightweight. Created in a
document or presentation for
review with stakeholders. Initial
scope should be summarized rather
than a list of stories that may not be
of interest at the vision level.

 Likely the most common approach.

 Easy to distribute for feedback.

Detailed. A traditional detailed
description of the vision. Usually
captured as a project charter or
formal cost-benefit analysis study.

 Many decisions will be made earlier in the life cycle
than they need to be, increasing waste and
inefficiency.

 Gives stakeholders a false sense of security.

 Because the requirements are very likely to change,
a detailed vision artifact tends to lead to significant
overhead later in the life cycle to address any
changes.

 Increases the length of time invested in Inception,
thereby increasing our overall cost of delay
(opportunity cost) and increasing the chance that
we’ll miss the window of opportunity for the
solution.

 May be appropriate in situations where the work is
being outsourced and the details are important, or
for a complex, multiyear initiative (which we
should organize into smaller initiatives).

211

Level of Agreement

How do we obtain agreement among our stakeholders that the vision makes sense? The
following table compares several strategies available to us.

Options (Ordered) Trade-Offs

General agreement. Most,
but not all, stakeholders
agree with the vision.

 It is usually easier to obtain general agreement than
consensus.

 Some people may not be happy with the vision.
Consensus. All stakeholders
and the delivery team agree
on the vision.

 It may be time-consuming or even impossible to get
consensus from all stakeholders.

 Consensus-based decision making tends to lead to
poor-quality decisions.

Dictated. The delivery team
is not consulted about the
value of the vision or if it is
achievable.

 Stakeholders and the delivery teams may not fully
engage if they are not permitted input into the vision,
particularly if they perceive the vision to be unrealistic.

 In regulatory situations portions of the vision,
particularly the scope and the delivery date, may be
mandatory.

Formality of Vision

How formally does the vision need to be presented and reviewed? The more formal the
presentation, the greater the level of preparation needed, and the more likely that a greater
amount of detail will be captured.

Options (Ordered) Trade-Offs

Statement of intent.
Stakeholders verbally
agree to the vision
without a formal review
process.

 A simple conversation may be all that is required to
conclude Inception and begin delivery.

 The most agile approach and suitable for straightforward
initiatives.

 The word “intent” implies that the vision may be revisited
and adjusted, and is suitable in situations where a degree of
uncertainty exists regarding the details in the vision.

Formal agreement –
lightweight. The team
and stakeholders have a
sit-down meeting to
formally review and
agree to the vision,
which has been
captured in a concise
and often high-level
manner. A sign-off may
be part of this review.

 The most common approach where key stakeholders wish
to be walked through the details of the vision before
committing to funding the delivery of the initiative.

 Suitable in situations for complex initiatives requiring
alignment across teams and stakeholder groups.

 The vision might be used to overly constrain the team,
often to the detriment of the stakeholders.

Formal agreement –
detailed. The team and
stakeholders have a sit-
down meeting to

 Often used in regulatory situations where there is a desire
for a rigorous vision that has been formally accepted by
stakeholders.

212

Options (Ordered) Trade-Offs
formally review and
agree to the vision,
which has been
captured in detail. A
sign-off is usually part
of this review.

 Suitable in situations for complex initiatives requiring
alignment across teams and stakeholder groups.

 The vision might be used to overly constrain the team,
often to the detriment of the stakeholders themselves.

 Aligns with a more formal approach to governance, which
in turn tends to increase risk and overhead for the team.

Contract. A signed
agreement regarding the
vision is made between
the team and
stakeholders.

 Often required when working with a vendor. Some
regulatory environments, particularly life-critical ones,
require contract-like sign-offs and tracking of key artifacts.

 Can inject needless overhead into the process, increasing
both cost and time to deliver.

 Often motivates a more formal approach to governance,
which in turn leads to increased risk and overhead for the
team.

213

Communicate the Vision

An important part of developing a common vision is to ensure that it’s been effectively shared
with, or communicated to, everyone involved. Our goal is to ensure that our stakeholders are
aligned with the strategy that we intend to follow.

Options (Ordered) Trade-Offs

Kickoff meeting. The
team, often with key
stakeholders in
attendance, meets and
publicly summarizes their
strategy for how they
intend to proceed.
Kickoff meetings are
often held at the
beginning of Inception to
initially align people, and
may also be held at the
end of Inception to signal
the start of Construction
[W].

 Effective way for people to meet one another if the team is
recently formed or if a lot of people are added all at once.

 Often seen as an official start for a new team.

 Public way to communicate the overall vision.

Information radiators.
Capture the vision on
whiteboards or on sheets
of flip chart paper.
Posting this information
on walls “radiates” the
vision to anyone
interested
[CockburnAgile].

 Very easy to do and stresses a desired low-formality agile
approach to up-front planning and modeling.

 Digital snapshots of the radiator can be taken to persist a
static version of the radiator, which is useful for archiving.

 Less useful if the vision is created by, and for, distributed
teams; needs to be reviewed formally with stakeholders, or
needs to be persisted for later editing.

 Not easily viewable outside the team’s work area.

 People need to know where the information radiators are and
that they’re allowed to look at them.

 It isn’t always clear what information is being “radiated,”
requiring discussion with people who understand the context
of what’s being shared.

Milestone review.
Gather critical
stakeholders together to
review the vision, accept
it, and decide whether to
continue with the effort.
We want to keep the
review as straightforward
as possible (see Govern
Delivery Team in Chapter
27).

 Motivates stakeholders to either support the team or make it
clear what their concerns are.

 Often requires communication with the key decision makers
beforehand so that they know what they’re being asked to
decide on.

 Often adds time to the length of the Inception phase,
particularly if the review results are negative and the team is
asked to rework the vision.

214

Options (Ordered) Trade-Offs
Review/walkthrough.
The vision is reviewed
with key stakeholders,
often as a prelude to a
milestone review (see
above) [W].

 Communicates the direction the team believes it is going in.

 Good way to get feedback from stakeholders who aren’t
actively involved with the development of the vision.

 Likely need supporting documentation, although it is
possible to do a wall walk (a walkthrough) of our information
radiators if we’ve been developing the vision in an Agile
Modeling/planning room.

Documentation. The
vision is captured in a
document, or via a
browser-based strategy
such as a wiki, and made
available to interested
stakeholders.

 Having a documented vision gives the team something to
refer back to during Construction, which is useful to
determine if we’re staying on track.

 Supports geographically distributed stakeholders.

 According to media richness theory (MRT), detailed
documentation is the least effective means of
communication available to us [W].

215

14 SECURE FUNDING

The Secure Funding process goal, shown in Figure 14.1, provides options for how we can
obtain funding for the team to continue on into Construction (and beyond). The Secure
Funding process goal is important to most agile
teams because, at least initially, they need the
money to pay for development of the solution. In
the case of dedicated product teams, discussed
below, they may eventually become self-funding,
where the revenue or cost savings from their
solution is sufficient to pay for the ongoing cost of
development. Until the team is self-funding, they
need some “seed funding” to get started.

 Figure 14.2 shows the high-level flow between
the Finance process blade, the Portfolio
Management process blade, and our team
[AmblerLines2017]. The team will have received
sufficient funding for Inception—this is typically
provided by our organization’s portfolio management activities—but additional funding will
need to be justified based on the vision for the team (see Chapter 13). In fact, the portfolio
management effort itself, as well as any efforts to explore potential product ideas, would also
need to have been funded in some way in order to get us to this point. As you can see in
Figure 14.2, this funding is typically provided by our organization’s finance efforts. Note that
in smaller organizations finance and portfolio management efforts are often addressed by a
single team, whereas larger organizations are likely to spread these functions across multiple
collaborating teams.

Figure 14.1: The goal diagram for Secure Funding.

Key Points in This Chapter

 We should gain agreement on
the funding strategy for our
initiative.

 Fixed-price funding is the
riskiest option available to us,
and luckily we have much better
options available.

 Stable funding of value streams,
rather than project-based
funding of software teams, is an
extremely effective approach.

216

Figure 14.2: Funding flows between finance, portfolio management, and a team.

When securing initial funding for a team, we need to consider three important questions:

 How will we fund the team?

 What type of team are we funding?

 How will we access those funds?

Choose Funding Strategy

We need to select the strategy that will be used to fund our solution-delivery team. The strategy
selected will have a significant impact on the behavior of the delivery team in terms of quality
delivered and willingness to embrace changing requirements. The following table compares
and contrasts several strategies for funding solution-delivery teams.

217

Options (Ordered) Trade-Offs

Charge by feature.
Features, such as the
addition of a new
report or
implementation of a
new user story, are
funded individually.

 Enables bidding on individual features, supporting a very
flexible approach to evolving requirements.

 Suitable for outsourcing but generally not used for internal
development.

 Requires significant involvement and sophistication of
stakeholders.

 Funding to address technical issues, such as paying down
technical debt, is likely to be starved out.

Cost plus. A variation
on time and materials
where a low rate is
paid for a developer’s
time to cover their
basic costs with
delivery bonuses paid
for the production of
consumable solutions.
This is also called
“outcome based” or
“cost reimbursement”
[W].

 Works very well for outsourced development, spreading the risk
between the customer and the service provider because the
service provider has their costs covered but won’t make a profit
unless they consistently deliver quality software.

 Low financial risk for both the team and for stakeholders.

 Requires active governance by stakeholders and a clear
definition of how to determine whether the project team has
met their service-level agreement (SLA) and therefore has
earned their performance bonus.

Time and materials
(T&M). With this
approach, we pay as
we go, paying an
hourly or daily rate
(“the time”) plus any
expenses (“the
materials”) incurred
[W].

 Low financial risk when teams are governed appropriately.

 Requires stakeholders to actively monitor and govern the team’s
finances.

 In the case of outsourcing, vendors should provide complete
transparency such as task boards so that stakeholders are
confident that they are getting value for their money.

Stage gate. With this
strategy, we estimate
and then fund the
project for a given
period of time before
going back for more
funding. This is
effectively a series of
small fixed-cost
funding increments
[W].

 Medium-level financial risk as it provides stakeholders with
financial leverage over a delivery team.

 Some organizations have an onerous funding process, so
requiring teams to obtain funding in stages can increase their
bureaucratic overhead and risk of delivering late.

 Except for the Inception phase, funding should be tied to
delivery of increments of working solutions, not paper-based
artifacts. The stage gates could coincide with DA’s Stakeholder
Vision, Proven Architecture, and/or Continued Viability
milestones as a component of our agile governance.

218

Options (Ordered) Trade-Offs
Fixed price/cost
(ranged). At the
beginning of the
project, we develop,
and then commit to,
an initial estimate that
is based on our up-
front requirements
and architecture
modeling efforts. The
estimate should be
presented as a fairly
large range, often +/-
25 % or even +/- 50
% to reflect the
riskiness of “fixed
price” estimates [W].

 Ranges provide stakeholders with a more realistic assessment of
the uncertainty faced by the team.

 High financial risk due to the initial estimate being based on
initial requirements that are very likely to change and a potential
for technical unknowns.

 To narrow the range, we will need to do significant up-front
modeling and planning, thereby increasing our cost of delay and
overall risk of incurring waste.

 Many stakeholders will focus on the lower end of the estimate
range.

 Many stakeholders don’t understand the need for ranged
estimates, and we will likely need to educate them on the
concept.

Fixed price/cost
(exact). An initial
estimate is created
early in the life cycle
and presented either as
an exact figure or as a
very small range (e.g.,
+/- 5 % or +/- 10 %)
[W].

 Very high financial risk due to likelihood of changing
requirements and technical unknowns.

 Provides stakeholders with an exact, although almost always
unrealistic, cost to hope for.

 Works well when we are allowed to drop scope to come in on
budget, otherwise quality will suffer, which eventually drives up
total cost of ownership (TCO) in the long run.

 Doesn’t communicate the actual uncertainty faced by the project
team and sets false expectations about accuracy.

Choose Funding Scope

We need to select the type of team that we will be funding. As you can see in the table below,
we have options.

Options (Ordered) Trade-Offs

Value stream. The
funding is for the entire
value stream, including
solution development,
IT operations of the
solution, and the
business operations of
the solution [W].

 Supports a more holistic view of value generation within our
organization.

 Works very well with modern, rolling-wave budgeting
processes.

 Value streams often cross organizational boundaries, yet
funding mechanisms in many organizations do not, making it
difficult to adopt this approach.

Line of business (LOB).
Provides funding for a
LOB or division and lets
them fund teams
accordingly [W].

 Provides significant flexibility to the LOB.

 Still requires the LOB to fund teams in some manner.

219

Options (Ordered) Trade-Offs
Product (long-lived)
team. The funding is for
a team to develop
multiple releases of the
solution over time,
potentially many years.

 Estimating costs for a dedicated product team is very easy (it’s
the number of people times our charge-out rate).

 Works very well with modern, rolling-wave budgeting
processes.

 Out of sync with the annual budgeting process in most
traditional organizations.

Project team. The
funding is for a team to
develop a single release
of the solution. Project-
based funding is often,
but not always, limited to
a single fiscal year at
most [W].

 Limits the scope and timeframe for funding.

 Fits in well with organizations still taking a project-based
approach to solution delivery.

 Estimating costs for a project team can be quite complicated
due to the variable staffing needs throughout a project and the
difficulty involved with predicting the schedule of a project.

220

Access Funds

There are various ways in which we can provide access to funds.

Options (Ordered) Trade-Offs

IT funding pool. Funds
are drawn as needed from
an organizational budget
(such as the IT or LOB
budget). This is basically a
“take what we need”
approach.

 Works well for high-competition situations where time
to market is critical.

 Requires ongoing monitoring of how the funds are
being invested.

 Requires a high-trust environment.

Informal request. A
straightforward and
simple request for funds is
submitted by the team.
This request is often made
via a presentation to the
finance team.

 Low overhead and potential to be fairly responsive;
supports lean financial governance.

 Does not provide the documentation, and the false
sense of predictability that accompanies it, that
traditional governance people often expect.

Formal request.
Comprehensive request
for funds, often requiring
documented value
assessment or
cost/benefit calculations
and a presentation to the
finance team.

 Fits with more formal or traditional approaches to
financial governance.

 High overhead, particularly for smaller efforts.

 Provides a false sense of control or predictability.

221

SECTION 3: PRODUCING BUSINESS VALUE

The aim of Construction is to produce a minimal marketable release (MMR) of a consumable
solution that is ready to be transitioned into production or the marketplace. This section is
organized into the following chapters:

 Chapter 15: Prove Architecture Early. Show that the team’s architectural strategy works
in practice, evolving it as necessary, early in Construction to reduce overall technical risk.

 Chapter 16: Address Changing Stakeholder Needs. Act on stakeholder feedback to
ensure that the team produces something that stakeholders desire.

 Chapter 17: Produce a Potentially Consumable Solution. Incrementally and
collaboratively build or configure the solution.

 Chapter 18: Improve Quality. Improve overall quality by avoiding the injection of new
technical debt and by paying down existing technical debt.

 Chapter 19: Accelerate Value Delivery. Ensure the quality of the solution being
produced by following good software engineering practices.

223

15 PROVE ARCHITECTURE EARLY

The Prove Architecture Early process goal, shown in Figure 15.1, provides options for
determining whether our architectural strategy is viable. There are several reasons why this
goal is important:

1. Reduces technical risk. There is a big difference between thinking that our
architecture works and knowing that it does. This is particularly important when we
are making significant architectural decisions, typically during the first release of a
solution or when we are reworking or replacing important aspects of an existing
solution. By addressing architecturally
risky functionality early in the life
cycle, we reduce the overall risk profile
of our endeavor. Figure 15.2 shows
the risk profile of a typical DAD team
following one of the project-based life
cycles (the Agile life cycle based on
Scrum or the Lean life cycle based on
Kanban; see Chapter 6). It shows how
the risk on a DAD team drops
substantially early in Construction due
to proving the architecture (ideally
with working code). Figure 15.3 compares the risk profiles of the DAD, Scrum, and
Traditional life cycles.

2. Increases the chance the team is aligned. By proving that the architecture works
in practice, we will remove
many, if not all, of the doubts
that people may have about our
strategy.
3. Supports appropriate
governance. As you can see in
Figure 15.2, there is an explicit
Proven Architecture milestone
built into DAD. As you learned
in Chapter 6, risk-based
milestones are an important
part of DAD’s lean governance
strategy.
4. Reduces political risk.
When a team is perceived as low
risk, particularly when we’ve
taken concrete steps to address
the risks that we face, an
interesting side effect is that it
makes it difficult for any
detractors to attack the work
that we’re doing. In short, we’re
not an easy target for them.

Key Points in This Chapter

 Building a “walking skeleton” of a
solution by prioritizing
architecturally risky functionality
and implementing it first will pay
down most, if not all, of the
technical risk faced by a team.

 Reviewing architecture models or
documents is an ineffective strategy
for mitigating architectural risk.

224

Figure 15.1: The goal diagram for Prove Architecture Early.

Figure 15.2: DAD’s risk-value life cycle.

Figure 15.3: Comparing the risk profiles of different life cycles.

225

To prove the architecture early in the life cycle, we may need to address two important
questions:

 How can we concretely validate that our architecture works?

 Do we need to review our strategy with key stakeholders?

Validate the Architecture

The only way that we can be sure that our architecture strategy truly meets our stakeholders’
needs is to have working code that addresses the architecturally risky aspects. This decision
point focuses on a collection of pragmatic, concrete strategies to prove our architecture via
running code. As you can see in the following table, we have several options for doing so.

Options (Ordered) Trade-Offs

End-to-end working skeleton.
Implement high-risk business
functionality that stresses the
architecturally significant aspects
of our solution [Kruchten]. This is
sometimes called a “walking
skeleton.”

 Requires the team to have an understanding of the
target architecture and the quality requirements for
their solution.

 This strategy (dis)proves your architectural strategy
early in Construction.

 The team, often led by the architecture owner, needs
to be able to justify to the product owner that the
architecturally risky functionality should be
implemented first.

 Easy to accomplish because all it requires is the
reprioritization of a few functional requirements.

 This works very well with an “integration tests first”
testing strategy (see the Accelerate Value Delivery
process goal in Chapter 19).

 Architecturally risky functionality may be difficult to
implement, competing with the strategy of
implementing a few easy requirements early in the
life cycle to give the team some quick wins.

Architecture spikes. One or
more people on the team write
quick prototyping code to explore
a new technology or combination
of technologies [Beck]. Sort of a
“mini proof of concept” (PoC).

 Explores a targeted technical issue.

 Teams are tempted to keep the (low-quality) code.

 Inexpensive, but still requires an explicit decision.

 This is a just-in-time (JIT) strategy that can be
applied at any point in the life cycle.

Proof of concept (PoC). An
architecturally significant
component—often a commercial
package, a framework, or
platform—is implemented within
our existing environment to
determine how well it works in
practice [W].

 Explores a large technical issue, often the
integration of a package into your environment.

 Typically an Inception phase, or even pre-Inception,
strategy.

 May require specific funding for a “mini project,” as
it can be expensive and time-consuming.

 In some cases, the decision to move forward with
the component is predetermined by senior
management, and the PoC is run to make it appear
that you’re following “the process.”

226

Options (Ordered) Trade-Offs
Solution bake-off. The team runs
multiple PoCs in parallel to
hopefully identify the best strategy
available.

 Increases the chance that you identify the best
solution early on.

 Often reveals that every option has trade-offs and
may not result in a clear “winner.”

 Often requires a mini project for funding.

 Typically an Inception phase, or even pre-Inception
strategy.

 Very expensive.

 In some cases, the winner is predetermined by
senior management.

Pilot test the solution. The actual
solution is deployed into
production for a small group of
end users. Sometimes called alpha
testing or beta testing [W].

 Typically requires significant development to get to
the point of having a deployable solution.

 Typically a late Construction strategy, with the
potential that any identified changes will be
expensive to address.

Review the Architecture

It is also possible to reduce some of your risk via reviewing your architectural strategy. These
strategies are less concrete, and as a result less effective, than the strategies for validating our
architectural strategy presented above.

Options (Ordered) Trade-Offs

Stakeholder demos.
Demonstrate the working solution
to “architecturally savvy”
stakeholders.

 Basically a normal demo, but with stakeholders who
have an architectural background.

 A good way to get feedback about the user
experience (UX) aspects of the architecture.

 Not sufficient for reviewing nonvisible aspects of
the architecture.

Informal reviews. A walkthrough
of the team’s architecture artifacts.
This can be as simple as a “wall
walk” of your architecture
sketches or a summary
presentation.

 Straightforward, inexpensive, and quick.

 Can be performed in an impromptu manner for
quick feedback, although when scheduling of
reviewers is required it has a medium-term feedback
cycle.

Formal reviews. Architecture
documents or models are
developed by the team and shared
with reviewers who are given time
to read and prepare feedback to
the team. This feedback may be
provided in a variety of formats,
but typically is given via a formal
meeting of the reviewers with the
team.

 The more comprehensive the artifacts, the lower the
chance that people will review them thoroughly.

 Agile teams often create these documents only to
pass through an organization’s traditional
governance strategy.

 Burdensome, expensive, and time-consuming.

 This strategy typically has a long, multiweek
feedback cycle, thereby increasing the average cost
to address any identified issues.

227

16 ADDRESS CHANGING STAKEHOLDER NEEDS

The Address Changing Stakeholder Needs process goal, overviewed in Figure 16.1, provides
options for DAD teams to react to changing needs effectively. Change happens. Sometimes
a change is a completely new piece of work, sometimes it’s a modification to work you haven’t
started yet, sometimes it’s a modification to work you’re currently doing, and sometimes it’s a
modification to work you’ve already delivered.

Of course, new information isn’t always a requirement change. The reality is that as a team
works on something, the stakeholder’s understanding, and in turn the team’s understanding, of
the true requirements will evolve and new or
changed details will surface. In an effort to
maintain a sustainable pace, we have seen some
“purist” team leads disallow new requirement
details to be brought into an iteration to help
motivate product owners to do a better job of
look-ahead modeling. In these situations, they
ask the product owner to create a new work item
and add it to the backlog to be estimated and
prioritized for development in a future iteration.
Obviously, this doesn’t help to build a good
working relationship between the business and
the delivery team. A better approach is for the
team to expect details to emerge during the
iteration, often via just-in-time (JIT) model storming or impromptu feedback sessions/demos,
and ensure that they allocate a buffer as a contingency during their iteration planning session.
When new information about an existing work item proves to be too large, at that point the
team can ask the product owner to introduce new work items. These decisions are described as
options in the Accept Changes decision point.

There are several reasons why this goal is important:

 Teams do more than implement new requirements. Yes, stakeholders need our
team to implement the new requirements that they come up with. But they also need
us to fix the defects that are found when using the solution, they need us to support
other teams working in parallel to our own, they need us to learn and grow as
professionals, and they need us to improve the quality of our implementations. The
implication is that their needs will generate a range of work item types, or “classes of
service.” This includes, but is not limited to, new requirements, changed/evolved
requirements, defect fixes, growing team members through training or education
events, paying down technical debt, and running experiments.

 Stakeholder needs will change. There are a variety of reasons why stakeholder
needs change, including gaining insight during a demo, your competitors releasing a
competing offering that your stakeholders need to react to, technology changes,
legislation changes, and many more good reasons. Jeff Patton has been known to say
that requirements change is not scope creep, but rather that our understanding of the
true needs grows. Disciplined Agilists embrace the fact that change is natural.

 The changes need to be managed. Part of embracing change is managing those
changes so that we react appropriately to them. Change is good and natural, but
uncontrolled change is not. We need to exhibit some degree of discipline with regard
to change so that we can meet the delivery expectations of our stakeholders. As

Key Points in This Chapter

 A team will receive feedback on a
regular basis that reflects the
changing understanding of what
stakeholders believe they need.

 On many teams, product owners are
responsible for eliciting and
prioritizing changing stakeholder
needs, but there are other (and
sometimes better) options to help
accomplish these things.

228

always, the trick is to be as agile with requirements change as possible. As you can see
in Figure 16.1, teams often discover that there’s a bit more to it than having a
simplistic stack of requirements prioritized by business value.

Figure 16.1: The goal diagram for Address Changing Stakeholder Needs.

To be effective, we need to consider several important questions:

 How are we going to manage work items?

 How are we going to prioritize changes?

 Who will prioritize the changes?

 What types of changes need to be prioritized?

 When are we going to accept any changes?

 How will we work with stakeholders?

 How will our team elicit feedback from stakeholders?

229

Manage Work Items

There are several strategies for how our team may go about managing work items. These
options are overviewed in Figure 16.2 and compared in the following table.

Figure 16.2: Strategies for managing work items.

230

Options (Ordered) Trade-Offs

Work item pool. One or more
pools of work items grouped
by class of service such as
expedite, business value, fixed
date, and intangible. Work is
then pulled in a lean, just-in-
time fashion based on the
highest priority at the time
[Anderson].

 Best where priorities are changing continually.

 Easily supports several prioritization schemes in parallel.

 Harder to see the work as one stacked-rank list of
priorities if there are multiple pools.

 Requires discipline to pull new work fairly from the
various categories. It’s common to see one or more
categories, such as paying down technical debt, starved
in favor of implementing new functionality.

Task board. All work items
are visually shown in one of
the columns on a task board.
The task board may be either
manual (e.g., stickies on a
whiteboard) or digital.
Sometimes called a scrum
board or Kanban board
[Anderson].

 All work, including both upcoming work and in-progress
work, is managed in one place.

 Increases transparency for the stakeholders.

 Works very well for teams working within short time
frames (i.e., following one of the lean life cycles or an
agile team with a small backlog).

 Works with both a work item pool and a work item list
approach (as you see in Figure 16.2).

 May be too detailed for prioritization by business
stakeholders.

Work item list. Work items
are managed as an ordered
list/stack, including all types
of work items (new
requirements, defects,
technical debt removal, etc.).
Work at the top of the list
should be captured in greater
detail than work at the bottom
of the list [ScrumGuide].

 Best suited where the team follows one of the DAD agile
life cycles.

 Clearly indicates the order in which work will be
performed, enabling effective prioritization discussions
with stakeholders.

 Supports the projection of cost and schedule estimates
via techniques such as burndown or burnup charts.

Requirements (product)
backlog. A unique, ranked
stack of work that needs to be
implemented for the solution.
Traditionally comprised of a
list of requirements in Scrum,
although now some
“requirement-like” work such
as fixing defects is also
included.

 Clearly indicates the order in which work will be
performed, enabling effective prioritization discussions
with stakeholders.

 Supports the projection of cost and schedule estimates
via techniques such as burndown or burnup charts.

None. Work is not persisted
anywhere for sharing
purposes (i.e., no
requirements are
documented, organized, and
managed). Requirements are
typically communicated
verbally or via temporary
models.

 Useful only in straightforward situations where work and
priorities are communicated in an extremely
collaborative fashion such as a product owner pairing
with a developer full-time.

231

Prioritize Work (How)

Our work items need to be prioritized in some manner so that we implement the most
important ones first. As you can see in the following table, there are many strategies for
prioritizing work items—strategies that can be combined as needed.

Options (Not Ordered) Trade-Offs

Business value. The value
to the organization is
estimated, usually in terms of
money or sometimes via
points.

 Increases the chance that the team focuses on the most
valuable work items, increasing ROI.

 Often hard to define business value.

 Not all stakeholders value the same things.

Risk. The risk profile of
work items is identified so
that riskier work is mitigated
appropriately.

 Increases the chance that the team will succeed by
mitigating risks early in the life cycle.

 People perceive risk differently.

 Requires effective risk management strategy (see Address
Risk in Chapter 25).

Due date. The delivery or
completion date for some
work items is mandated,
either due to imposed
regulations or promises made
to stakeholders.

 Increases the chance that the team gets the work done on
time (if the dates are reasonable).

 Supports regulatory compliance.

 May cause stress for the team if the dates are not
reasonable.

Cost of delay. The
opportunity costs of delaying
the work, such as forgoing
revenue or missing the market
entirely, are identified. Cost of
delay considers that
implementing something now
may provide significantly
more value than if you wait for
six months [W].

 Increases the chance that the team focuses on the most
valuable work items, increasing ROI by capturing
revenue that wouldn’t have been realized if not
implemented early enough.

 Just like it’s difficult to estimate value, it’s even harder to
estimate cost of delay.

Weighted shortest job first
(WSJF). Work items vary in
value and size, making them
hard to compare. To
normalize the estimates,
divide the business value
(hopefully taking into
account the cost of delay) by
the size/cost of
implementation [W].

 Increases the chance that the team maximizes overall
ROI by focusing on the most valuable combination of
work items.

 Enables you to prioritize different work items fairly.

 A “low-hanging fruit” type of strategy to deliver high
value to duration ratio work.

 Requires reasonably straightforward math (once you’ve
calculated business value).

232

Options (Not Ordered) Trade-Offs
Operational emergency. The
majority of teams are
working on the new release
of an existing solution, and as
a result, they receive defect
reports from end users. Some
of these production issues
need to be dealt with quickly.

 Ensures that the team addresses critical problems when
they arise.

 Challenging for iteration-based life cycles since it can
result in not meeting the team’s iteration goals.

 Works well for teams following lean life cycles.

 Requires a consistent strategy for determining problem
severity (see the Operations process blade
[AmblerLines2017]).

Dependency. Sometimes one
piece of functionality
depends on the existence of
other functionality. When A
depends on B, you may want
to prioritize the work so that
B is implemented first.

 Potentially makes development easier by building
functionality in a convenient order.

 Risks building lower value functionality earlier than other
prioritization strategies would warrant.

 Strives to minimize dependencies, especially on any work
outside of the team. If possible, bring this external work
into the team so that the team controls its destiny.

 Reduces the need to mock out missing functionality.

Class of service. There are
different categories of work,
such as implementing new
functionality, fixing defects,
and so on. See Prioritize
Work (What) below. This
strategy sets percentage goals
for each of the major work
item types to fairly address
each category.

 Ensures that some classes of service, also called work
item types, such as paying down technical debt or
growing team members, don’t get starved out.

 Difficult to justify when there are time or cost pressures
on the team.

 Very appropriate for lean life cycles where work can be
organized by class or type of work.

Prioritize Work (Who)

Work items should be prioritized by someone who understands and represents the needs of
the stakeholders. Most agile methods will prescribe that the product owner is responsible for
this, a strategy first proposed by Scrum in the mid-1990s. The following table outlines several
options.

Options (Ordered) Trade-Offs

Product owner. As we
saw in Chapter 4, the
product owner is
responsible for
prioritizing the work for
the team [ScrumGuide].

 Clear who the team goes to for priorities.

 Size/cost of the work item typically doesn’t matter.

 May not initially understand how to (or be willing to) prioritize
technical, team health, or solution health work items.

 May need to work with senior stakeholders or a change control
board (CCB) to prioritize critical/expensive work items.

 Can be difficult to staff the product owner role.

 In many organizations, the product owner is not given the
authority to prioritize work items and instead the team must rely
on a product manager or senior business leader to do so.

233

Options (Ordered) Trade-Offs
Business analyst. At
scale, either a team-of-
teams situation or a
team that is
geographically
distributed, a subteam
may not have a
dedicated product
owner and instead have
a business analyst or
junior product owner to
interact with. This
strategy is promoted by
LeSS.

 Similar issues to the product owner approach, but business
analysts often aren’t accustomed to having the authority to
make prioritization decisions.

 Business analysts will often bring a disciplined approach to
requirements elicitation.

 Business analysts will often bring a documentation-heavy
approach to requirements capture.

Product manager. A
product manager is
responsible for the
long-term vision of an
overall
product/solution, the
marketing of the
solution, and potentially
sales.

 Product managers are typically adept at prioritization of high-
level outcomes or features for a product, but may not be
experienced working with detailed requirements.

 Increases the chance that tactical prioritizations will reflect the
overall vision for the product.

 Product managers are often not available to make the tactical,
day-to-day decisions required by a team. Product management
is already a challenging job, and adding this responsibility may
not be realistic.

Change control board
(CCB). A CCB is a
group of people who
meet regularly, typically
at least once a month
although as often as
weekly is common, who
are responsible for
prioritizing changes to a
solution [W].

 Makes it clear about who the team goes to for priorities.

 Often a bottleneck because the team needs to wait for the CCB
to decide. This in turn introduces delay (waste) in the process.

 May not be willing to prioritize “small” work items.

 Often focuses on business-oriented changes.

Active stakeholder
participation. The
team works directly with
stakeholders on a daily
basis, and the
stakeholders are actively
involved with decision
making, modeling, and
testing activities. Similar
to an on-site customer,
albeit with a greater level
of participation
[AgileModeling].

 It isn’t always clear which stakeholder should prioritize when
several are involved.

 Team often gets conflicting priorities when several
stakeholders provide direction.

 Some stakeholders may not have the authority to prioritize and
will need to defer to someone more senior, slowing things
down.

 Stakeholders are often focused on their area and may not see
the larger organizational picture.

234

Options (Ordered) Trade-Offs

Architecture owner. As
we saw in Chapter 4, the
architecture owner is
responsible for guiding
a team in architecture
decisions. Because this
is often a senior person,
they may be able to
prioritize the work as
well.

 A valid option when nobody else is available to prioritize the
work or for straightforward, technically oriented efforts such
as infrastructure upgrades.

 Makes it clear about who the team goes to for priorities.

 The architecture owner is likely to inappropriately focus on
technical decisions, such as paying down technical debt or
running experiments rather than implementing new
functionality.

 The architecture owner likely doesn’t have the authority to
prioritize business functionality.

On-site customer. An
Extreme Programming
(XP) practice where the
team is near-located
with their customers,
the XP term for
stakeholders [Beck].

 Similar to active stakeholder participation, although the
“customer” isn’t as likely to be as willing to make the decisions.

 It is not always clear who should prioritize when there are
multiple customers/stakeholders.

 Business stakeholders are often unaware of the IT and process
implications and will struggle to prioritize the work as a result.

The team. The team
prioritizes their work,
typically led by the team
lead or architecture
owner.

 Works in situations like startups where the team collectively
has the vision for the product. In some product companies,
we have seen that the development team has a better
understanding of the change requirements than users or other
stakeholders.

 Often a strategy of last resort when stakeholders are unable or
unwilling to work with the team. Very likely an indication that
you shouldn’t be building this solution at this time if you can’t
get stakeholder involvement.

 Often leads to gold plating, the addition of “cool features”
identified by team members.

 Often leads to too much focus on technical work items.

 The team may appear out of control to senior leaders, and it
very often is.

Prioritize Work (What)

There are several reasons, or considerations, that may need to be taken into account when
prioritizing work items. These considerations, which align with work item types or classes of
service, must be balanced by whomever is responsible for prioritizing the work.

Options (Not Ordered) Trade-Offs

New functionality. A new
requirement, often captured
(at a high level) as a user
story, epic, or other form of
usage requirement.

 Supports the vision, or the day-to-day work, of
stakeholders.

 Teams new to agile can make the mistake of believing they
only need to implement new functionality.

 Some product owners new to the role may choose to
prioritize new functionality over other types of work items,
effectively starving out the other work.

235

Options (Not Ordered) Trade-Offs

Defect/bug. A perceived
inadequacy or improper
implementation of existing
functionality, typically
identified by someone
outside of the development
team such as an independent
tester or end user.

 Supports addressing existing end users’ perceived or actual
issues with the existing solution.

 Defects are often perceived to be the team’s fault, which
can complicate the issue of how the work is paid for in a
contracting situation.

Technical debt removal. An
explicit decision to improve
the quality of an existing
asset.

 Supports all stakeholders in the long run in that it increases
the quality and evolvability of the solution, thereby
reducing cost and time to market.

 Often not related to implementing new functionality, so
can be seen by stakeholders as a waste.

Experiment. A decision to
try something to discover
how well it works within
your current environment.
Experiments may focus on
new or different
functionality, or on potential
process or organizational
improvements.

 Reduces overall risk.

 Supports continuous improvement, and better yet, guided
continuous improvement (GCI) (see Chapter 1).

 Often not related to implementing new functionality, so
can be seen by stakeholders as a waste.

 Enables team to learn how well something works in our
environment.

Learning opportunity. Work
is prioritized to provide
learning experiences, such as
“hackathons” or training, for
one or more team members.
This may also include
prioritizing “easy” work to
give the team an opportunity
to learn how to work
together effectively.

 Can help the team to gel.

 Can be used to give the team a chance to learn how to work
together.

 Training and other forms of education often come out of
a different budget, complicating the prioritization process
because the person(s) who should do the prioritization may
not own the budget.

 When it’s not directly related to implementing new
functionality, it can be seen by stakeholders as a waste.

236

Accept Changes

When it comes to actual changes, the
question is: When should we do the
work? Scrum used to discourage
change during an iteration/sprint
since the team has committed to the
delivery of a set of work items based
on agreed-upon acceptance criteria at
the iteration planning session. In
2012, this changed and the people
behind the Scrum method accepted
that sometimes change is so common
that we should consider accepting
new work into the current iteration, a
strategy that has been the norm in the
Extreme Programming (XP) and
Unified Process (UP) methods since
the late 1990s. DAD, as you can see
in the following table, has always
supported both approaches.

Having said all this, this decision
point typically only applies to teams
following one of the agile, iteration-
based life cycles due to the small-batch nature of that approach. When following one of the
lean life cycles, priorities can change at any time. This only impacts the team if they are asked
to pause work in progress in favor of a new work item (such as addressing a severity one
production defect).

Options (Ordered) Trade-Offs

During iteration. The team
accepts new work during the
current iteration.

 Enables the team to respond immediately to
critical changes.

 Can require the team to work overtime if they have
not been allowed to move an equivalent (or
greater) amount of work to a future iteration.

Future iterations. The team defers
any new work to future iterations.

 Enables the team to respond to changing
stakeholder needs.

 Can result in schedule slippage and changes to
release plans if substantial changes occur.

Never. Scope is locked down and
change is not allowed without
formal change management
procedures.

 Supports, or more accurately is motivated by, cost-
driven funding strategies.

 Supports schedule-driven or cost-driven plans.

 Increases the chance that what the team produces
won’t actually meet stakeholder needs.

237

Stakeholder Interaction With Team

We need to identify how we’re going to work with our stakeholders to understand the changes
that they’re asking for. Figure 16.3 shows that the strategies where team members can interact
directly with stakeholders tend to be more effective than the strategies where there is an
intermediary, which in turn tend to work better than documentation-based strategies. The
following table overviews and compares the various strategies that our team can adopt to
interact with stakeholders.

Figure 16.3: Comparing the effectiveness of communication strategies between people
(from media richness theory).

Options (Ordered) Trade-Offs

Active stakeholder
participation. Stakeholders
work with the team and
actively participate in
modeling sessions, demos,
testing, and other activities;
an Agile Modeling practice
that extends the on-site
customer.

 Quick and direct; can get robust information quickly that
the team can act on.

 Stakeholders see the team acting on their input, increasing
their confidence.

 Team members need robust communication skills.

 Some stakeholders do not have the time or inclination to
work directly with the team.

On-site customer.
Stakeholders are readily
available to discuss issues
with team members, and are
typically in the same building
if not on the same floor as
the team, an Extreme
Programming (XP) practice.

 Very similar to active stakeholder participation, albeit with
less involvement of stakeholders.

 Team members need robust communication and analysis
skills to explore needs with stakeholders.

238

Options (Ordered) Trade-Offs

Indirectly via product
owner. The product owner
interacts directly with
stakeholders, eliciting details
from them, then
communicates the
stakeholder needs to the
team, a Scrum practice.

 Requires less communication skills from team members
because they don’t interact directly with stakeholders.

 Can be difficult to secure someone from the business to
staff the product owner role.

 The product owner will interpret the stakeholder needs,
effectively acting as a filter between the team and the
stakeholders.

 The product owner acts as a communication conduit
between the team and stakeholders, distilling the valuable
information from the chaff/noise.

Indirectly via business
analyst. The business analyst
interacts directly with
stakeholders, eliciting details
from them, then
communicates the
stakeholder needs to the
team.

 Very similar to product owner strategy, but can lead to
more documentation due to some business analysis
cultures.

 The business analyst serves as a link to the product owner,
or as a junior product owner, when stakeholders are
geographically distributed from the team.

 Business analysts often come from the business so may
not have the best understanding of IT needs.

 Business system analysts often report through IT so may
not have the best understanding of the true business
needs.

Indirectly via product
manager. A product
manager is responsible for
the long-term vision of an
overall product/solution,
the marketing of the
solution, and potentially
sales.

 Very similar to the product owner strategy.

 Product managers are already very busy people, so asking
them to also perform requirements elicitation may not be
realistic.

 Appropriate strategy for a small organization or for a
startup project.

Indirectly via digital means.
Stakeholder needs are
communicated to the team
via digital means such as
online chat, “agile
management” tools, or
documents.

 Supports stakeholders who are geographically distributed.

 Greater chance of misunderstanding due to using a less
effective communication strategy.

 Documentation can support regulatory compliance (if
any).

Change control board
(CCB). Stakeholder needs
flow through a CCB to the
team, often in combination
with an indirect means via a
product owner, business
analyst, or digital tool [W].

 Supports strict regulatory compliance strategies.

 Suffers from issues around poor communication.

 Adds another level of indirection between the team and
stakeholders, increasing the chance of misunderstandings.

 This can be slow, increasing the costs associated with
delay and waste due to waiting.

 The CCB often becomes a bottleneck.

 Expensive way to manage change.

 Adds process complexity (and cost and time) because
CCBs often require a triage process so that only critical
changes are routed to the CCB.

239

Elicit Requirements

We need to choose how we’re going to elicit requirements details from our stakeholders. The
following table compares several common strategies for doing so, all of which can be done
face to face or in a distributed manner via digital tools. As always, we recommend face to face
whenever possible (see Figure 16.3 above).

Options (Not Ordered) Trade-Offs

Just-in-time (JIT) model
storming. One or more
people work with the
stakeholders directly
[AgileModeling].

 Direct, interactive way to explore requirements,
increasing the chance they will be understood.

 JIT increases efficiency by enabling the team to focus on
what needs to be produced.

 At least some team members need robust
communication and analysis skills.

Look-ahead
modeling/backlog
refinement. The product
owner or business analyst
performs sufficient work to
get the work item ready for
implementation.

 Requires easy access to stakeholders.

 Works very well with an active stakeholder participation
approach.

 Ensures that work items conform to the definition of
ready (DoR) [Rubin], the minimum criteria that a work
item must meet before the team will work on it.

Interviews. Stakeholders are
interviewed, typically by a
product owner or business
analyst, to obtain details about
work items.

 Enables stakeholders to focus small periods of time on
supporting the team.

 You will miss information, requiring you to go back to
the stakeholders for more.

 Harder to see the big picture.

 Harder to negotiate conflicting priorities when you are
working with stakeholders one on one.

On-demand demos. The
current version of our
solution is made available to
stakeholders in a known and
easy-to-access environment.

 Requires a working CI/CD pipeline to deliver changes
to an accessible environment.

 Increases transparency and potentially reduces the
feedback cycle with stakeholders as they can view and
test the solution at any time.

 Enables stakeholders to see work in process.

 Helps to ensure that there are no unpleasant surprises at
end-of-iteration demos.

All-hands demos. Show the
solution to a wide range of
stakeholders.

 We gain feedback from a wide range of people.

 Great way to validate that your product owner/business
analyst/change control board represents the
stakeholders well (or not).

 Increases transparency, thereby reducing political risk
(for successful demos).

Iteration demos. Show the
solution, usually at the end of
an iteration for agile teams, to
a targeted group of
stakeholders.

 The team gains feedback from a subset of stakeholders
interested in what you’re building (assuming you have
invited the right ones).

 Medium-length feedback cycle for agile teams
(dependent on iteration length).

241

17 PRODUCE A POTENTIALLY CONSUMABLE SOLUTION

The Produce a Potentially Consumable Solution process goal is overviewed in Figure 17.1.
Wait a minute, shouldn’t we be talking about “potentially shippable software?” That’s a good
start, but in the enterprise space we need to do
a lot better. It isn’t enough to be potentially
shippable; what our stakeholders want is
something that is usable (it is easy to work with),
desirable (they want to use it), and functional (it
meets their needs). Furthermore, our
stakeholders need solutions, not just software.
Yes, software is part of the solution. But we may
also be updating the hardware or platform that
it runs on, writing supporting documentation,
changing the business processes around the
usage of the system, and even evolving the
organization structure of the people using it. Working software is nice, but a consumable
(usable + desirable + functional) solution (software + hardware + documentation + process
+ organization structure) actually gets the job done.

There are several reasons why this process goal is important:

 We need to incrementally produce a consumable solution. One of the key agile
principles is “Simplicity—the art of maximizing the amount of work not done—is
essential.” It is important to keep this in mind when choosing whether to work on an
artifact and to what level of detail. Show your users a working solution as quickly as
possible and at regular intervals. For agile teams, this begins in the first iteration of
Construction and continues for each subsequent iteration. For lean teams, it may
begin even sooner, perhaps just a few days into Construction. Stakeholders will soon
tell us whether we are on the right track. Often, they will tell us that we have missed
the mark. This is a natural outcome. It is a good thing that we found this out early
while we still have the opportunity to adapt our solution toward what they truly need
and expect.

 We want to explore requirements details at the last most responsible moment.
By doing so, we can focus on what our stakeholders actually need. The longer we wait
to gather the details, the more we’ll know about the domain and therefore will be able
to ask more intelligent questions. Likewise, our stakeholders will have seen the
solution developed over time so will be able to give us better answers. The bottom
line is that by waiting, we can focus and have better conversations.

 We want to explore design details at the last most responsible moment. Because
we’re exploring requirements just in time (JIT), we similarly evolve our design JIT.

 We need to plan and coordinate our work. Disciplined Agilists plan at the “long
term” release level and the intermediate term iteration level (if they’re following one
of the agile life cycles). We coordinate with other teams when it makes sense to do so
and internally on at least a daily basis.

Key Points in This Chapter

 The team will collaboratively
produce the solution
incrementally, seeking and acting
on feedback as they do so.

 The requirements, design, and plan
will evolve over time based on
your—and your stakeholders’—
changing understanding of what
they want.

242

Figure 17.1: The goal diagram for Produce a Potentially Consumable Solution.

To be effective, we need to consider several important questions:

 How will we plan how we’ll work together?

 What programming approach will we take?

 How will we explore the problem space?

 How will we architect and design the solution?

 How will we approach writing deliverable documentation?

 How will we ensure that our solution is consumable?

Plan the Work

As a team, we need to plan what we are going to do and how we’re going to do it. There are
different ways that we can plan, different times that we can do it, and different scopes that we
can address. Although planning can be hard, and plans often prove to be inaccurate in practice,

243

the act of planning is quite valuable because we think through what we’re doing before we do
it. Here are several heuristics about planning that will help guide our decision making:

 It’s easier to plan small things than large things.

 The people who are responsible for doing the work are more likely to produce a good
plan than people who aren’t.

 It’s easier to plan work that you’re just about to do compared with work in the future.

 People who have done similar work before are likely to produce a better plan than people
who haven’t.

 Multiple people are likely to produce a better plan than someone planning alone.
Several common planning options are compared in the table below. Coordination is highly

related to planning, options for which are captured by the Coordinate Activities process goal
(Chapter 23).

Options (Not Ordered) Trade-Offs

Coordination meetings/daily
standups. The team gets together
to quickly coordinate what we’re
doing for the day. These meetings
typically take 10–15 minutes. The
primary aim is to coordinate,
although in many ways this is
detailed planning. Also called a
Scrum meeting, a Scrum, or a
huddle [W].

 Keeps the team on track so that there are no surprises.

 Enables the team to eliminate the waste of waiting by
identifying potential dependencies between the work
of team members that day, thereby allowing them to
organize accordingly.

 People new to self-organization, or more accurately
new to being a true team member, see this as a waste
of time.

 Coordination meetings quickly become overhead
when performed poorly—your goal is to coordinate
the work, not to do the work during the meeting.

 Potential to become micromanagement if the team
doesn’t actively focus on self-organization and senior
management actively chooses to allow that.

Iteration/sprint planning. The
team performs detailed planning at
the beginning of each iteration,
identifying the work items that they
intend to perform during that
iteration and the detailed tasks
required to do so [Cohn].

 Identifies who will be doing what during the current
iteration.

 Increased acceptance by the team because it’s their
plan.

 Often requires look-ahead planning and look-ahead
modeling sessions to ensure that the work items are
ready to be worked on.

 Often seen as overhead by developers, particularly
those new to self-organization.

Just-in-time (JIT) planning. Similar
to iteration/sprint planning, except
performed as needed and typically
for smaller batches of work
[Anderson].

 Identifies the work to be done and often who will be
doing it.

 Increased acceptance by the team because it’s their
plan.

 A work item will need to be sufficiently explored,
typically via Agile Modeling strategies, before the
work to fulfill it can be planned.

244

Options (Not Ordered) Trade-Offs
Look-ahead planning/backlog
refinement. Detailed planning is
performed for an upcoming work
item, perhaps one that looks like it
will be worked on within the next
few weeks [AgileModeling].

 Identify potential dependencies between work items,
which can be important information for prioritization
of work.

 Shortens iteration/sprint or JIT planning sessions.

 Appropriate for complex work items, potentially
leading to the work item being simplified or broken
into smaller (and simpler) items.

 Potential to be wasted effort if the work item is
deprioritized or even removed from backlog/work
item pool.

 Enables teams to eliminate waste of waiting by
identifying missing information or availability of
people or resources.

 Enables teams to eliminate waste by more efficiently
negotiating scope through deprioritization of less
important work items.

Release planning/program
increment (PI) planning.
Planning for the
current/forthcoming release of a
solution. Typically performed by
the team with the participation of
key stakeholders when appropriate.
Release planning is the Extreme
Programming (XP) version of the
practice, and PI planning is the
SAFe version [Beck, SAFe].

 Often includes modeling and other organizational
tasks so it tends to become a mini-Inception phase in
practice.

 Particularly effective when the team and key
stakeholders gather physically.

 Enables the team to plan/coordinate their work for
the next few weeks or months.

 Requires facilitation and preplanning to run
successfully.

Visualize plan. The plan/schedule
is captured, shared, and updated in
a visual manner that is
understandable by both team
members and stakeholders. For a
detailed plan, this is often a
collection of stickies on a physical
task board or a digital
representation of such in a
software-based “agile
management” tool. For a high-level
plan this is often a simple Gantt
chart or PERT chart [Anderson].

 Increases transparency internally within the team and
externally with stakeholders.

 Provides an easy mechanism for the team to update
their release plan or iteration plan as needed.

 Enables the team to know who is doing what, to look
for and then address bottlenecks, and to stay on track.

 Requires the team to be sufficiently disciplined to
update the plan or the information that goes into it.

245

Develop Software

We want to build our solution as a series of high-quality increments. As shown in the following
table, there are several strategies to choose from as to how our team can approach
development. It’s important to notice that we distinguish between the concepts of
programming and development (programming + testing).

Options (Ordered) Trade-Offs

Behavior-driven
development (BDD). BDD
is the combination of test-
first development (see
below), where you write
acceptance tests, and
refactoring. Also known as
acceptance test-driven
development (ATDD) or
specification by example
[ExecutableSpecs].

 The acceptance tests do double duty. Because you write them
before the code, the tests both specify the detailed
requirements and validate that your solution conforms to
them.

 Refactoring reduces your velocity in the short term.

 Refactoring increases velocity and evolvability in the long
term by reducing technical debt.

 Takes discipline to ensure tests are actually written before
the code. Takes time, and tests may have their own defects
or be poorly designed.

Test-driven development
(TDD). TDD is the
combination of test-first
development (see below),
where you write developer-
unit tests, and refactoring
[W].

 The unit tests do double duty (see BDD above).

 TDD results in better code since it needs to conform to
the design of the unit tests.

 Gives greater confidence in the ability to change the system
knowing that defects injected with new code will be caught.

 Refactoring is a necessary discipline to ensure longevity of
the application through managing technical debt.

Test-first development
(TFD). Writing automated
developer unit tests before
the code that needs to pass
the tests [W].

 Takes discipline and skill.

 Many developers will not have a testing mindset so they
may need training and opportunities to pair with people
with testing skills.

 Many existing legacy assets, including both systems and
data sources, will not have a sufficient automated test suite
in place. This is a form of technical debt that makes it
difficult to adopt agile development strategies.

Test-after development.
The developer writes a bit of
code (perhaps up to a few
hours) and then writes the
tests to validate that code.

 Reduces the feedback cycle between injecting a defect into
code and finding it. This in turn reduces the average cost
of fixing defects.

 A good first step toward TFD.

 Teams often find reasons to not write tests, such as time
pressures.

Testless programming. The
developer writes the code,
often does some nominal
testing, but then hands their
work to someone else to do
the “real testing.”

 Leads to poor quality designs, which in turn are more
difficult and expensive to evolve later.

 Valid approach for prototyping code that will be discarded
afterward.

 Valid for production code only if your stakeholders
knowingly accept the consequences, perhaps because time
to market is a greater consideration for them than quality
and long-term evolvability.

246

Explore Stakeholder Needs

We want to explore our changing stakeholder needs throughout Construction, and this
decision point captures techniques for doing the work of needs elicitation. We want to keep
this effort as simple and collaborative as we can, doing just enough exploration to understand
what we need to produce and no more. To do this, we need to work with someone who
understands the stakeholder needs, ideally stakeholders themselves, and if not, a surrogate
such as a product owner. Note that the Address Changing Stakeholder Needs process goal
(Chapter 16) captures the details around organizing and managing evolving requirements.

Options (Not Ordered) Trade-Offs

Active stakeholder
participation/on-site customer.
Stakeholders can be actively
involved with requirements
modeling when you adopt
inclusive tools such as whiteboards
and paper. Active stakeholder
participation is Agile Modeling’s
extension to XP’s on-site
customer practice
[AgileModeling].

 Opportunity to significantly improve the quality of
the information because the stakeholders are the
ones best suited to explore their needs.

 Modeling enables people to think through the “big
issues” that they face.

 Difficult to convince stakeholders to be actively
involved or even to be available to the team.

 Best performed when several stakeholders are
involved.

Agile Modeling session/big
room planning. Stakeholder
needs are explored face to face via
Agile Modeling strategies. Key
stakeholders and the team gather
in a large modeling room that has
lots of whiteboard space to work
through the stakeholder needs.
Several modeling rooms may be
required for “breakouts” when
large groups of people are
involved. This is one of several
aspects of “big room planning” in
SAFe [AgileModeling, SAFe].

 Organizations new to agile often need to build one
or more agile workspaces, and may have
organizational challenges doing so.

 Modeling enables people to think through the “big
issues” that they face.

 It is easy to measure the cost but difficult to measure
the value of doing this.

 Often need to fly key people in and make them
available for several days.

 Requires facilitation and organization/planning
beforehand to run a successful session.

Behavior-driven development
(BDD). Detailed stakeholder
needs are captured in the form of
executable specifications via
acceptance test tools. The tests are
written before the production
code required to implement the
functionality being tested. Also
called acceptance test-driven
development (ATDD).

 Enables teams to capture stakeholders’ needs via
automated tests in a “human readable” format.

 Tests are very useful for thinking through, and
capturing, detailed ideas.

 Forces the stakeholders or product owner to clearly
define how to validate that the solution meets their
expectations.

 With a BDD approach, the acceptance tests do
double duty as requirements.

 A large number of automated tests may need to be
maintained and updated as the solution evolves.

247

Options (Not Ordered) Trade-Offs
Definition of ready (DoR). Our
DoR defines the minimum criteria
that a work item must meet before
our team will work on it [Rubin].

 A DoR is a simple “quality gate” that protects the
team from poorly formed work items.

 A DoR provides transparency to stakeholders in
that it communicates what the team requires from
them to do their jobs.

 DoRs can be difficult to meet when product owners
are new to the job or are overwhelmed with work
(the implication is that the team will need to help
them).

 DoRs can be an excuse for product owners to
produce artifacts instead of sitting down with the
team and having a conversation.

Detailed requirements
specification. Requirements are
captured as static documentation,
often using a word processor or
wiki. Requirement details may be
captured at the beginning of the
life cycle or as needed throughout
Construction. When the
requirements are captured at the
beginning of the life cycle this
approach is referred to as “big
requirements up front” (BRUF)
[AgileModeling].

 May be useful in contractual situations to create a
requirements baseline for the solution. Of course,
you would be better advised to adopt agile
contracting strategies that don’t require this.

 Difficult to keep up to date as requirements
continually change.

 Duplication of requirements and test cases makes
maintenance difficult.

 It is very difficult to create accurate requirement
documents before starting to build the solution.

 Supports documentation-heavy interpretations of
regulatory requirements.

 This is often a symptom of teams working in mini
waterfalls, not in a truly iterative manner.

High-level requirements
specification. Typically
composed of several critical
diagrams with concise descriptions
of each. The aim is to present an
overview of the requirements to
provide context.

 Provides sufficient information to begin
development of one or more work items.

 Details are evolved during the iteration in parallel to
the requirement being implemented.

 When combined with a BDD/executable
specification approach, it supports regulatory
compliance very well.

 Some team members may be uncomfortable with
the lack of detail if they are used to coding from a
detailed specification.

Just-in-time (JIT) model
storming. Requirements are
explored as needed, often in an
impromptu and simple manner—
usually a team member asks the
product owner or one or more
stakeholders to explain what they
need, and everyone gathers around
a whiteboard or similar tool to
share their ideas [AgileModeling].

 Enables us to focus on what needs to be built, and
on the most current needs.

 Stakeholder needs are elicited at the last most
responsible moment.

 Modeling enables people to think through the “big
issues” that they face.

 Requires easy access to stakeholders or their proxies
(such as product owners or business analysts).

248

Options (Not Ordered) Trade-Offs
Look-ahead modeling/backlog
refinement. Performed for work
items to be delivered in upcoming
iterations to get them ready.
Ideally, we model at most one or
two iterations ahead of time. The
amount of modeling that we do is
inversely proportional to how far
ahead we model—the further
ahead we look, the less detail we
need right now. Look-ahead
modeling is an Agile Modeling
practice, and backlog refinement
(formerly called backlog
grooming) is the corresponding
Scrum practice [AgileModeling,
ScrumGuide].

 Reduces the risk of being caught off guard by
domain complexities.

 Can improve effectiveness of upcoming iteration
planning.

 Modeling enables people to think through the “big
issues” that they face.

 Enables teams to eliminate the waste of waiting
through identification of dependencies on other
teams, new technologies, forthcoming information,
and so on. The team can address the dependencies
before the implementation work begins, or
reprioritize the work accordingly.

 Distracts team members from delivering work
commitments for the current iteration.

 If the work item becomes a lower priority and is not
implemented, the modeling work becomes a waste.
The further ahead you model, the greater the risk
that the requirements will change and your
modeling will be for naught.

Split (A/B) testing. We produce
two or more versions of a feature
and put them into production in
parallel, measuring pertinent usage
statistics to determine which
version is most effective. When a
given user works with the system,
they are consistently presented
with the same feature version each
time, even though several versions
exist. This is a traditional strategy
from the 1980s, and maybe even
farther back, popularized in the
2010s by Lean Startup.

 Enables us to make fact-based decisions on actual
end-user usage data regarding what version of a
feature is most effective.

 Supports a set-based design approach; see Explore
Solution Design below.

 Increases development costs because several
versions of the same feature need to be
implemented.

 Prevents “analysis paralysis” by allowing us to
concretely move on.

 Requires technical infrastructure to direct specific
users to the feature versions and to log feature
usage.

249

Explore Solution Design

Because our stakeholder needs evolve over time, our solution design must similarly evolve to
address these new ideas. Our aim is to explore the design collaboratively in a manner that is
as simple as we can make it while still being sufficient for our needs. The following table
compares potential design strategies that Disciplined Agile teams should consider adopting.

Options (Not Ordered) Trade-Offs

Agile Modeling
session/big room
planning. Architectural
issues, and sometimes
design issues, are worked
through face to face via
Agile Modeling strategies.
See Explore Stakeholder
Needs above for more
information
[AgileModeling, SAFe].

 Organizations new to agile often need to build one or more
agile workspaces, and may have organizational challenges
doing so.

 It is easy to measure the cost, but difficult to measure the
value of doing this.

 Often need to fly key people in and make them available
for several days.

 Requires facilitation and organization/planning
beforehand to run a successful session.

Architecture spike. Write
a minimal amount of code
to validate one or more
technical approaches.
Often used with set-based
design (see below) [Beck].

 Reduces technical risk by quickly proving, or disproving, a
specific aspect of the architecture.

 It takes time and effort that instead could be invested in
building new functionality.

 Results in code that should be discarded but sometimes
isn’t for the sake of “saving time.”

250

Options (Not Ordered) Trade-Offs
Detailed design
specification. Designs are
captured as static
documentation, often using
a word processor or wiki.
Details may be captured at
the beginning of the life
cycle or as needed
throughout Construction.
When the design is captured
at the beginning of the life
cycle this approach is
referred to as “big design up
front” (BDUF).

 Reduces the time required for iteration planning because it
helps to get a work item ready to be worked on.

 Useful in regulatory situations that require design
specifications.

 When performed as a handoff between senior and junior
team members, the junior team members may become
demotivated because they don’t get to do the “fun design
stuff.”

 Detailed design specifications and the actual code can
easily get out of sync.

 This can often be a symptom of a lack of collaboration or
trust between team members. When team members are
collaborating closely, they don’t need detailed
specifications to drive their work.

 Often a symptom of overspecialization of some team
members (in this case in modeling), which in turn leads to
overhead and risk.

Just-in-time (JIT) model
storming. JIT agile design
modeling for a work item as
it is about to be
implemented
[AgileModeling].

 Team members think through what they’re about to build,
streamlining the development process.

 Modeling enables people to think through the “big issues”
that they face.

 Consistent with lean’s principle of deferring commitment
until the last moment, when the most up-to-date
information about the requirements is known.

Look-ahead
modeling/backlog
refinement. Team
members, often led by the
architecture owner, model
the design of upcoming,
technically complex
requirements. The amount
of modeling that we do is
inversely proportional to
how far ahead we model—
the further ahead we look,
the less detail we need right
now. See Explore
Stakeholder Needs above
for more information
[AgileModeling,
ScrumGuide].

 Allows teams to consider how designs need to evolve to
meet upcoming requirements.

 Reduces the risk of being caught off guard by technical
complexities.

 Modeling enables people to think through the “big issues”
that they face.

 Can improve effectiveness of upcoming iteration planning
because team members investigate design alternatives
before committing to an approach during iteration
planning.

 Enables teams to eliminate the waste of waiting through
identification of dependencies on other teams, new
technologies, forthcoming information, and so on. The
team can address the dependencies before the
implementation work begins, or reprioritize the work
accordingly.

 If the requirement becomes a lower priority and is not
implemented, the modeling work becomes a waste. The
further ahead you model, the greater the risk that the
requirements will change and your modeling work will be
for naught.

 Distracts team members from delivering work
commitments for the current iteration.

251

Options (Not Ordered) Trade-Offs
Mob programming. The
whole team works on the
same thing, at the same
time, in the same space, and
at the same
computer. Everyone on the
team will drive the keyboard
at some point, rotating in
for short periods (10–15
minutes) at a time [W].

 May be useful to ensure the quality of very technical, high-
risk work.

 Very useful for exploring a new technology or technique
and then determining how to move forward with it (or not)
as a team.

 Useful for sharing knowledge within the team.

 Very difficult to convince management that this is an
efficient way to work (so don’t ask for permission,
experiment with the technique and discover how well it
works in practice).

Model-driven development
(MDD). Detailed visual
models are created via
sophisticated, software-
based modeling tools
(formerly called computer-
aided software engineering
[CASE] tools). Code is
generated by the tool(s) and
typically reverse engineered
so that the models stay in
sync with the code. This is
sometimes call model-
driven architecture (MDA),
a strategy promoted by the
Object Management Group
(OMG).

 Analysis and design models allow for portability by
transforming code to multiple platforms. Visual models
that are synchronized with code result in detailed system
documentation.

 Can be time-consuming to perform detailed modeling.

 Requires team members to have sophisticated modeling
skills.

 MDD is fairly common in embedded software
development and systems engineering environments but
not very common in IT environments.

Proof of concept (PoC). A
technical prototype is
developed over several days
to several weeks to explore
a new technology. Formal
success criteria for the PoC
should be developed before
it begins.

 Reduces risk by exploring how a major technical feature,
often an expensive software package or platform, works in
practice within your environment.

 PoCs can be large, expensive efforts that are sometimes
run as a mini project.

 Success criteria is often politically motivated and
sometimes even oriented toward a predetermined answer.

Set-based design. The team
considers several design
strategies concurrently,
eliminating options over
time until the most effective
design remains [W].

 Very appropriate for architecture-level design decisions
and for high-risk, detailed design decisions.

 Enables the team to identify the most effective design
strategy.

 Split (A/B) testing (see Explore Stakeholder Needs above)
can be used to explore the effectiveness of design options
in practice.

 More expensive and time-consuming than single-option
design strategies.

252

Options (Not Ordered) Trade-Offs

Test-driven development
(TDD). TDD is the
combination of test-first
development (TFD), where
you write developer-unit
tests before production
code, and refactoring [W].

 TDD leads to higher quality code.

 Refactoring code as a matter of course throughout the
Construction phase keeps technical debt manageable.

 Tests are very useful for thinking through and capturing
detailed ideas.

 Requires skill and discipline on the part of team members.

 Existing legacy code and data sources may not have
existing regression test suites, requiring investment in
them.

 This can be a difficult, albeit incredibly valuable, practice
to adopt.

Write Deliverable Documentation

An important part of our solution is deliverable documentation, the kind of documentation
needed by our stakeholders to work with, operate, and sustain the solution. This may include
system overview documentation, user guides/help, training manuals, and operations
guidelines, etc. There are several agile documentation strategies to keep in mind:

 Invest in quality over documentation. The better designed our solution is, the
easier it will be for stakeholders to understand it, and therefore generally less
documentation will be required.

 Work closely with stakeholders. Figure 17.2 summarizes the CRUFT formula for
calculating the effectiveness of a document as a percentage. The only way we can
write effective documentation is if we know what stakeholders actually need and how
they will work with the deliverable documentation that we produce. Effective
documents tend to be single purpose and targeted at a specific audience.

 Write documentation that is just barely good enough (JBGE). When we do
create documentation it should be JBGE, or just barely sufficient, to fulfill the needs
of our stakeholders and no more. Any investment in an artifact to make it more than
good enough is a waste. Keep your documentation concise.

Figure 17.2: The CRUFT formula.

253

The following table compares several Agile Modeling practices that our team can adopt
when writing documentation [AgileModeling].

Options (Ordered) Trade-Offs

Active stakeholder
participation. Stakeholders work
with team member(s) who have
technical writing skills to write
“their” documentation.

 Difficult to convince stakeholders to be actively
involved.

 The act of writing will help stakeholders learn the
details of the solution.

 Significantly greater chance that the team will
develop useful documentation for stakeholders.

Continuous documentation –
same iteration. Deliverable
documentation is evolved
throughout the life cycle. Updates
to documentation are made in the
same iteration as corresponding
changes to other aspects of the
solution.

 It is easier to write documentation when it is fresh
in your mind. The effort to write documentation is
spread throughout the project.

 Ensures that your solution is up to date and
potentially shippable at the end of the iteration.

 Documentation-update efforts during Transition
are significantly reduced, if not eliminated.

 Evolving requirements may motivate changes to
previously written documentation, slowing us down
(XP would say we’re traveling heavy).

 This approach is hard to make work in short
iterations because the information to be
documented may not stabilize in time for it to be
documented during that iteration.

Continuous documentation –
Following iteration. Deliverable
documentation is evolved
throughout the life cycle. Updates
to documentation are made in the
iteration following the
corresponding changes to other
aspects of the solution.

 Evolving requirements may motivate changes to
previously written documentation.

 This approach works well for short iterations. Our
solution is, in effect, not consumable until the
documentation is up to date, so with a short
iteration we don’t need to wait too long before the
solution is “done.”

 Makes it very difficult to properly test the solution
if it isn’t yet “complete” at the end of the current
iteration.

Document late. The creation of
deliverable documentation is left
until just before releasing the
solution into production.

 Minimizes the overall effort to write the
documentation because the information to be
captured will have stabilized.

 We run the risk of being unable to finish the
documentation due to schedule pressures.

 We may have forgotten important information from
earlier in the project.

 Increases the manual work during Transition,
preventing us from automating Transition into an
activity instead of a phase (see Chapter 6).

 This approach effectively prevents us from fully
adopting the practice of continuous delivery.

254

Ensure Consumability

Design thinking tells us that we need to ensure that our solution is consumable—that it is be
functional, usable, and desirable. We will do this by applying a combination of user experience
(UX) strategies in an agile manner and by reducing the feedback cycle with our stakeholders.
Figure 17.3 shows the feedback cycle that we experience when working with stakeholders
during Construction, and our aim should be to tighten the cycle however we can. The
following table compares strategies that we could adopt.

Figure 17.3: The stakeholder feedback cycle.

Options (Not Ordered) Trade-Offs

Demonstrations. The team shows
(demos) their working solution to a
group of interested stakeholders.
Demos can be run at any time on an
impromptu basis or scheduled
(perhaps at the end of an iteration).
Demos may be focused on the
interests of a small group of specific
stakeholders or broad and
presented for a wider, “all-hands”
group. Demos may be face to face
or virtual/remote, and they may be
scripted or ad hoc.

 Concrete feedback is provided to the team,
particularly when stakeholders are invited to
work with the solution during the demo.

 Provides transparency to stakeholders.

 Enables the team to discuss consumability issues
with stakeholders throughout the life cycle.

 Stakeholders need to make time to attend the
demo.

Design sprint. A multiday Agile
Modeling session typically focusing
on UX (so it’s really a narrowly
focused, mini Inception). Typically
run before Inception (for ideation)
or during Inception to focus on
UX. Often includes
usability/consumability design and
testing [W].

 Explore, and hopefully address, significant UX
issues during Construction.

 For many teams, this is a step in the right
direction toward agile design thinking.

 Requires significant involvement of stakeholders
over several days, which can be difficult to
schedule.

 Effectively “big UX design,” running the risks
associated with overmodeling and committing to
decisions too early.

 Symptom that you didn’t do Inception well
enough.

255

Options (Not Ordered) Trade-Offs
Regular deployment. The team
deploys their working solution on a
regular basis into an internal
environment(s), perhaps a testing
or demo environment, and better
yet, into production. This
deployment occurs at least once an
iteration, although at least
daily/nightly is preferred, and
better yet, several times a day via a
continuous delivery (CD) strategy.

 Reduces the feedback cycle by making the
solution available to others more often.

 Provides opportunities for the team to streamline
and potentially fully automate the deployment
process.

 Supports strategies such as parallel independent
testing and demonstrations.

 Initially adds overhead to the team to do the
deployment work.

Usability/consumability design.
The user interface (UI) of the
solution is designed, taking the user
experience into account. This is a
UX/design practice, albeit one that
you want to keep as agile as possible
[W].

 Increases the chance that you will build a usable
and desirable solution.

 Requires significant stakeholder involvement, on
an ongoing and regular basis if you’re really
taking an agile approach to your UX efforts,
which can be difficult to get.

 Usability design, and design thinking in general,
is a sophisticated skill that can be difficult to find.

Usability/consumability testing.
The usability of the solution’s UI is
validated, often through observing
potential users working with the
solution to perform common tasks.
This is a UX practice, albeit one that
you want to keep as agile as possible
[W].

 Verifies that you have built a usable and desirable
solution.

 Requires significant stakeholder involvement, on
an ongoing and regular basis if you’re really
taking an agile approach to your UX efforts,
which can be difficult to get.

 Usability testing is a sophisticated skill that can
be difficult to find.

257

18 IMPROVE QUALITY

The Improve Quality process goal, depicted in Figure 18.1, shows strategies for addressing
the technical debt and related quality issues faced by a Disciplined Agile Delivery (DAD) team.
The focus of this goal is to capture specific
techniques, rather than general strategies such
as increasing collaboration, comprehensive
testing, and reducing the feedback cycle. These
general strategies pervade the rest of the book,
for example the Accelerate Value Delivery
process goal (Chapter 19) encompasses a large
number of testing techniques and strategies,
and the Produce a Potentially Consumable
Solution process goal (Chapter 17) addresses
consumability techniques and executable
specification strategies such as test-driven
development (TDD) and behavior-driven
development (BDD) that reduce the feedback
cycle a DAD team has with its stakeholders.
Our point is that quality strategies pervade DAD.

To properly improve quality, we must consider all aspects of our work, not just the source
code that we write, and we must be enterprise aware in that we recognize quality goes beyond
the confines of the solution that we’re producing. This goal is important because it enables us
to:

1. Pay down technical debt. Technical debt refers to the implied cost of future
refactoring or rework to improve the quality of an asset to make it easy to maintain
and extend. We want to pay down technical debt, in other words fix the quality
problems within our assets, to enable us to evolve them safely and quickly. High-
quality assets are easier and cheaper to work with than low-quality assets.

2. Avoid new technical debt. At a minimum, we shouldn’t make our organization’s
technical debt problem any worse than it already is. By being quality focused, by
quickly addressing any quality problems that we do inject into our work (often via
refactoring), we can avoid adding new technical debt.

3. Work in a more enterprise-aware manner. Quality problems affect everyone—
they affect our team’s ability to evolve our solution to meet the changing needs of
our stakeholders, they affect the user experience of our solution, and they reduce the
value of our solution to our organization. By looking beyond code quality problems,
we increase the chance of addressing quality challenges that impact our stakeholders.

Key Points in This Chapter

 Technical debt is slowly choking the
life out of your organization,
reducing your ability to respond to
opportunities in the marketplace
and increasing your cost of IT.

 The easiest technical debt to pay
down is the debt that you don’t
incur in the first place.

 Consider paying down technical
debt gradually over time, making it
part of what you normally do as a
matter of course.

258

Figure 18.1: The process goal diagram for Improve Quality.

To improve the quality of our work, we need to address four important questions:

 Can we improve the implementation of our solution?

 Can we improve our deliverable documentation?

 Can we improve the format of our (noncode) deliverables?

 Can we improve our solution quality by reusing existing assets?

Improve Implementation

A fundamental agile principle is for our team to maintain a sustainable pace that enables us to
swiftly react to changing stakeholder needs (see Chapter 16). To do this, our assets need to be
of sufficiently high quality so that they are easily evolved. Therefore, we must develop high-
quality assets, and when we find technical debt in those assets, we should address that debt
appropriately. This can be difficult because technical debt can appear in multiple locations—
in our code, in our data, and even in our user interfaces (UIs). Important questions that we
need to ask ourselves are:

 Why does this technical debt exist?

 What can we learn from this debt so that we can avoid injecting similar technical debt
in the future?

 How much of this debt do we need to pay down now and how much of this debt can
we live with?

259

The following table compares several strategies for improving our implementation.

Options (Not Ordered) Trade-Offs

Refactor code. A code
refactoring is a simple change to
the source code, such as
renaming an operation or
introducing a variable, that
improves the quality without
changing the semantics of the
code in a practical manner
[Refactoring].

 Pays down code-based technical debt safely in small
increments.

 Improves readability and maintainability of the code.

 Developers need to understand and follow common
code quality conventions so that they know what to
refactor.

 Developers on the team may not have the requisite
skills and knowledge to pay down technical debt in
the code, requiring coaching and potentially training.

Refactor databases. A database
refactoring is a simple change to
a database schema, such as
renaming a column or adding a
lookup table, that improves the
quality without changing the
semantics of the database in a
practical manner
[DBRefactoring].

 Pays down data technical debt safely in small
increments.

 Developers need to understand and follow data
quality conventions.

 Few developers have a data background, nor may
they be sufficiently aware of enterprise data issues,
risking inappropriate refactoring.

 Requires long-term database refactoring process
support, a data management activity, to remove the
implementation scaffolding.

Refactor the user interface (UI).
A UI refactoring is a simple
change to the UI, such as aligning
fields or applying a consistent
font, that improves the quality
without changing the
functionality of the UI in a
practical manner.

 Pays down UI-based technical debt safely in small
increments.

 Improves the usability/consumability of a solution.

 Developers need to understand and follow UI quality
conventions.

 This requires participation of the product owner, but
they may not be aware of your organizational UI
conventions or of user experience (UX) concerns.

 Developers on the team may not have the requisite
skills and knowledge to pay down UI technical debt,
requiring coaching and potentially training in UI, UX,
and design thinking.

Refactor test assets. The team
improves the implementation of
their test assets by replacing
manual tests with automated
tests, by migrating automated
tests to the most appropriate
place, and by automating other
aspects of the testing process.

 Reduces the cost of regression testing.

 Reduces the feedback cycle.

 Automated regression test suites act as a safety check,
increasing our ability to find injected defects when we
make changes.

 Reduces the delays associated with releasing into
production.

 Requires investment in paying down technical debt
associated with testing.

260

Options (Not Ordered) Trade-Offs
Accept technical debt. The
team makes a conscious decision
to not remove technical debt at
the current time which, as you
can see in the technical debt
quadrant of Figure 18.2, is a valid
option. This is a decision that
should be led by the architecture
owner and confirmed by the
product owner.

 Increases speed to delivery in the short term at the
cost of decreasing maintainability in the long term.

 Agile purists may not accept this as a valid trade-off,
leading to arguments within the team.

Rewrite. Technical debt is
addressed in a large-scale manner
by redeveloping a large portion
of a system (or even the entire
system).

 Pays down technical debt quickly in large increments.

 In practice, it’s difficult to find a reasonably sized
“asset” to rewrite due to high coupling with other
assets.

 Often needs to be treated as a project to obtain
funding.

 Tends to be risky due to the large change required.

 Tends to be difficult to size and cost due to
unforeseen side effects from coupling.

Figure 18.2: Martin Fowler’s technical debt quadrant.

261

Improve Deliverable Documentation

Our documents, our “noncode assets,” can also suffer from technical debt problems.
Furthermore, you may find that the required documentation surrounding an existing system
may not even exist yet and we may need to take responsibility for addressing that problem.
The following table compares several strategies for potentially increasing the usefulness of the
documents that we create.

Options (Ordered) Trade-Offs

Single-source
information. Information is
captured in one place, and
one place only, and is then
referenced as needed. This is
effectively the normalization
of documentation
[AgileModeling].

 Difficult to do given disparate documentation and
specification technologies.

 Requires sophisticated tools and integration in some cases
to produce consumable documentation from the
information components. However, wikis are a great tool
for single-sourcing information because we can write a
single wiki page for a cohesive piece of information and
then reference it from a variety of places, even from
outside of the wiki tool.

 Greatly increases accuracy and maintainability of
documentation.

Executable specifications.
Specifications are captured
in the form of automated
tests. Detailed requirements
are captured via acceptance
tests and detailed designs as
developer tests
[ExecutableSpecs].

 Requires team members to have automated testing skills,
and better yet, test-driven development (TDD) or
behavior-driven development (BDD) skills.

 Increased accuracy and value of the specifications because
they also validate your implementation.

 Specification documents, if needed, can be generated
from the tests. This is an example of single-sourcing
information or what Gojko Adzic calls “living
documentation.”

 Team members are motivated to keep the specifications
in sync with the implementation.

 Legacy implementations will likely require investment in
writing the missing automated tests.

Single-purpose
documents. A document is
written with a single purpose
in mind, such as a user
manual, a training manual, or
an operations manual
[AgileModeling].

 The resulting documents are easy to work with, increasing
the consumability of the documentation.

 Often results in several smaller documents that need to be
maintained.

 Likely to have overlapping information between
documents, making the information harder to keep in
sync.

Multipurpose documents. A
document is written to serve
several purposes. For
example, a single document
might be written so that it is
used as a training manual, help
manual, and a user reference
guide [AgileModeling].

 Often results in a handful of large documents.

 Less chance of overlapping information between
documents.

 People are more likely to know where to go to for
information because of the small number of documents.

 Documents are less consumable and harder to maintain.

262

Improve Deliverable Format

We can potentially increase the readability and usability of our documentation through the
effective application of common templates. The following table compares several strategies
for improving the format of our deliverables.

Options (Ordered) Trade-Offs

Apply concise template. The
template contains the 20 % of the
fields that capture 80 % of the
information required. The
additional 20 % of the information
is then captured as the team sees
fit.

 Documents will vary between teams.

 The majority of information is consistently
captured between teams.

 The team is prompted to capture the critical
information.

 Potential that some of the fields are not required,
resulting in “not applicable” being filled in or, worse
yet, unnecessary information filled in.

Write freeform documents
(#NoTemplates). The team
creates documentation using
whatever style and approach that
they believe is appropriate.

 Works very well for simple documents or for small
organizations with few systems.

 Becomes confusing at scale due to inconsistencies
between teams, particularly for people who need to
work with documentation produced by different
teams.

 Enables team to capture only the specific
information required.

 Can miss key information because there’s no
prompting from the template.

Refactor away from template.
Remove or modify the fields of a
comprehensive template to fit the
needs of the team.

 Increases the consumability of the document as it
avoids input in the inappropriate sections.

 Focuses the document on the valuable information.

 Decreases consistency between teams.

 May motivate teams to refactor existing
documentation that is currently based on older
versions of the template.

Apply comprehensive template.
The template is designed to (try to)
capture all possible information
that may need to appear in the
document.

 Likely to have many “not applicable” sections.

 Onerous to fill out and review.

 Often results in questionable documentation
because teams feel the need to provide input into
all sections of the template.

263

Reuse Enterprise Assets

A relatively easy strategy for improving the quality of our solution is to reuse existing, high-
quality assets. Assets that are reused/leveraged by multiple solutions are tested more
thoroughly, have often “stood the test of time,” and tend to get the investment required to
keep them of high quality. Reuse has the added benefit of shortening our development time
and lowering our costs. The following table describes several strategies that our team can
adopt to increase reuse, as well as meet the ongoing goal of Leverage and Enhance Existing
Infrastructure (Chapter 26 goes into greater detail).

Options (Not Ordered) Trade-Offs

Follow common
guidelines. The team
adopts and follows
common guidelines or
standards. This includes
coding conventions, data
standards, security
standards, UI standards,
and more. These
guidelines may be in the
form of written
documentation,
configuration files (used by
code or schema analysis
tools), or via word of
mouth.

 Results in increased quality of the assets being developed.

 Guidelines provide guardrails for teams and can act as
enabling constraints.

 Some team members, particularly the inexperienced ones,
may not like being required to follow the guidelines.

 When the guidelines do not yet exist, the team may be
required to begin the creation of them, hopefully based on
existing industry guidelines, slowing down development in
the short term.

 Existing guidelines may need to be updated, often by
collaborating with the team responsible for them.

 The team needs to know about and have access to the
guidelines.

Leverage common
process assets. The team
adopts, and tailors where
necessary, existing process
assets such as procedures,
templates, life cycles,
governance conventions,
or similar.

 Speeds up the team’s learning by not requiring them to
reinvent the process wheel.

 Supports regulatory regimes that require a defined process.

 When there are many teams in our organization, we will
need a strategy in place to share common process elements
(something covered in the Continuous Improvement
process blade).

Leverage existing
experience/learnings.
Our organization has
many knowledgeable and
experienced people
working here. We should
take advantage of that and
reach out to them for help
and advice whenever
appropriate, and to learn
from them when they
share their experiences
with us.

 We can avoid common mistakes, and speed up our own
improvement, by learning from others.

 It is easy to fall into the “common best practices” trap
where we assume that because something worked for
another team, it will work for us too. A better strategy is to
experiment with the idea to see whether and how well it
works in our situation.

 See the Evolve WoW process goal (Chapter 24) and the
Continuous Improvement process blade
[AmblerLines2017].

 Requires humility on the part of the team to accept the idea
that others have already worked through similar challenges
that we currently face and that we can therefore learn from
them.

264

Options (Not Ordered) Trade-Offs
Leverage shared data
sources. The team reuses
existing data sources,
including databases, data
files, and configuration
files (or other
implementations) in the
creation of the solution.

 Increases overall data quality across our organization.

 Lowers the overall cost of development.

 Team members need to know about and be able to access
shared data sources.

 Data quality problems will affect multiple systems
(therefore refactor the data sources).

 A strategy to evolve and support the shared data sources
over time is required.

 Requires common quality conventions across the
organization.

 Requires effective enterprise architecture (EA) and data
management to be truly effective.

Leverage shared
functionality. The team
reuses existing
functionality, such as web
services, microservices,
frameworks, or
components (or other
forms of implementation)
in the creation of the
solution.

 Increases overall quality across our organization.

 Lowers the overall cost of development.

 Shared functionality across solutions is easier to evolve
because it is in one place.

 A strategy to evolve and support the shared assets over time
is required.

 Requires common quality conventions across teams.

 When shared functionality fails, many systems could be
affected.

 Requires effective EA and reuse engineering efforts to be
truly effective.

 Team members need to be able to find the shared
functionality.

265

19 ACCELERATE VALUE DELIVERY

The aim of the Accelerate Value Delivery process goal, formerly called Move Closer to a
Deployable Release,7 is to optimize technical aspects of how our team works (interpersonal
aspects are addressed by the Coordinate Activities process goal in Chapter 23). As a result,
this process goal encompasses critical decision points around deployment, configuration
management, and quality assurance (QA). The Accelerate Value Delivery goal is important
because it enables us to:

 Streamline deployment. For our deployment efforts to be effective, we must
choose the best strategy that our team is capable of and actively plan our approach
with applicable stakeholders, such as operations engineers and release managers. We
will need a strategy for how we release
internally, such as into a demo
environment or testing
environment(s), and how we will
release into production.

 Support a DevOps strategy
through streamlining and
automation. A key component of any
DevOps strategy is automation of
operational functionality to monitor
and control running systems. In
combination with automating your
continuous integration
(CI)/continuous deployment (CD) pipeline, this is often referred to as an
“infrastructure as code” strategy.

 Build quality activities into our process. We want to build quality into our process
from the very beginning of the life cycle, including both validation and verification
(V&V) strategies. Ideally, we want to avoid injecting quality problems to begin with,
typically through continuous collaboration, but failing that, we want to find any
potential defects as early as possible to reduce the average cost of fixing them. This
is often referred to as a “shift left” strategy.

7 Why the name change? The original name wasn’t clear and, quite frankly, it was a mouthful.

Key Points in This Chapter

 Teams actively streamline
development through automation.

 When deployment isn’t (yet) fully
automated, it will need to be
planned for with appropriate
stakeholders from operations.

 Teams actively test their work
throughout Construction, building
quality into the entire life cycle.

266

Figure 19.1: The goal diagram for Accelerate Value Delivery.

267

To be effective, we need to consider several important questions:

 How will we deploy our solution?

 How can we automate our technical infrastructure?

 How will we manage the assets that we produce?

 How will we manage the configuration of our assets?

 What strategies will we follow to validate our work?

 What types of testing will we need to perform?

 How will we assure stakeholders that the quality of our work is sufficient?

 How will we maintain traceability, if at all?

Choose a Deployment Strategy

We need to identify how often we intend to deploy our solution, both internally (into demo
or testing environments) and into production. Will we only deploy once? Will we deploy
several times a day? Somewhere in between? Another key question we need to answer is how
automated will our deployment be?

When it comes to the cadence of deployments, we like to distinguish between three
categories:

1. Irregular deployment. There is a long time between deployments, often weeks or
months or even years. Deployments may be planned, perhaps to hit a fixed delivery
date, or may be impromptu.

2. Regular deployment. There is a consistent cadence to when we deploy our solution.
For example, we could choose to have nightly releases, weekly releases, biweekly
releases, monthly releases, quarterly releases, and so on.

3. Continuous deployment. We deploy our solution, or at least portions of it, many
times a day. If something builds successfully in one environment/sandbox, then it is
automatically deployed to the next environment.

Our aim is to reduce the feedback cycle between the team and our stakeholders to identify
potential changes as soon as we can, thereby reducing the average cost to make those changes.
Figure 19.2 depicts common deployment strategies mapped to Boehm’s average cost of
change curve. As you can see, the more often we release, the lower the average cost to make
a change, and thereby the greater the likelihood that we’ll be able to evolve our solution to
meet the changing needs of our stakeholders.

Lean software development also provides significant insight into the importance of
increasing the cadence of releases. A fundamental principle of lean is to reduce work in
process (WIP), and a key way to do that is to have smaller production releases. Reducing WIP
increases quality, which in turn leads to reduced cost, both of which enable you to release
faster. It is a virtuous improvement cycle. Reduced WIP also leads to a reduced need for
managing the work and for any replanning due to changed stakeholders needs, resulting in
less overhead and cost.

268

Figure 19.2: The average cost to make changes.

Options (Ordered) Trade-Offs

Continuous deployment
(CD)/release stream. The solution
is automatically deployed through
all internal testing environments
and into production without
human intervention.

 A low-risk, inexpensive way to deploy into
production. Fourteen percent of agile/lean teams
report that they release into production whenever
they want to, and an additional 7 % indicate that
they release at least daily [SoftDev18].

 Requires a continuous integration (CI)/continuous
deployment (CD) pipeline and, by implication,
sophisticated automated regression testing.

 Enables the team to receive continuous feedback
from end users.

 Enables us to potentially remove our internal demo
environment (we can just use production for that).

 This is a fundamental practice that enables the team
to adopt either one of the Continuous Delivery:
Agile or Continuous Delivery: Lean life cycles.

Continuous deployment (CD) –
internal only. The solution is
automatically deployed through all
internal testing environments with
human intervention but is not
deployed automatically into
production [W].

 Requires a continuous integration (CI)/continuous
deployment (CD) pipeline and, by implication,
sophisticated automated regression testing.

 Enables teams to streamline their (internal)
deployment processes, which in turn informs
external deployment into production.

 Enables teams to move toward adopting the CD
practice. Thirty-two percent of agile/lean teams
report that they release internally whenever they
want to, and an additional 21 % indicate that they
release internally at least daily [SoftDev18].

269

Options (Ordered) Trade-Offs

Regular releases/release train. The
solution is released on a regular
schedule (i.e., quarterly, bimonthly,
monthly, biweekly) into
production [W, SAFe].

 Release schedule becomes predictable, thereby
setting stakeholder expectations and making it easier
for external teams to coordinate with our team.

 Important step toward a continuous delivery (CD)
approach, particularly when the releases are very
regular (such as monthly or better).

 The cycle time from idea to delivery into production
may not be sufficient, particularly with longer
release cycles (such as quarterly releases).

External release as appropriate.
The solution is released manually
(often by someone running one or
more deployment scripts) into
production at the behest of
stakeholders. This may be an
impromptu decision at the end of
an iteration (i.e., an irregular
deployment) or may be preplanned
(i.e., an irregular deployment with
a fixed delivery date or a regular
deployment, perhaps as quarterly).

 Enables opportunities for regular feedback from
end users.

 Helps the team move closer to continuous
deployment.

 Changes identified by end users can be expensive
(on average) to implement.

 Requires regression testing infrastructure, some of
which may still be manual (which is problematic).

 Requires automation of deployment scripts for
production releases.

Internal release as appropriate.
The solution is manually released
(often by someone running one or
more scripts) into internal testing
and demo environments. Often
driven by desire for feedback, this
is a form of irregular deployment.

 Enables opportunities for regular feedback from
internal stakeholders.

 Helps the team move closer to continuous
deployment (internal only).

 Changes identified by end users can be expensive
(on average) to implement.

 Requires regression testing infrastructure, some of
which may still be manual (which is problematic).

 Requires automation of deployment scripts for
production releases.

Single release. The solution is
released into production a single
release at a time, with following
releases (if any) planned out as
separate efforts. Often driven by
promises to a customer, regulatory
requirements, or a project mindset.
Also called a project release, this is
a form of irregular deployment.

 This is a very risky way to release because the team
will have no experience releasing this solution into
production.

 Changes identified by end users can be very
expensive (on average) to implement, and with a
project approach there may not even be budget to
do so after the release.

 Deployment often includes expensive and slow
manual processes.

 Appropriate for solutions that are truly one-release
propositions, but they are few in practice.

270

Plan Deployment

We need to decide how we will go about planning how to deploy our solution. When will we
plan? Who will be involved? Can we potentially automate away the need for deployment
planning? In organizations with dozens, if not hundreds, of delivery teams working in parallel,
we will need to coordinate our deployment plan with any common Release Management
strategies [AmblerLines2017].

Options (Ordered) Trade-Offs

Continuous deployment (CD).
The solution is automatically
deployed through all internal
testing environments and into
production without human
intervention [W].

 Effectively, no planning is required because “the
plan” is to allow the deployment scripts to run
automatically.

 Production releases are automatic and therefore
predictable.

 Requires sophisticated testing, continuous
integration (CI), and continuous deployment (CD)
infrastructure.

Continuous deployment (CD) –
internal only. The solution is
automatically deployed through all
internal testing environments with
human intervention but is not
deployed automatically into
production.

 Production releases still need to be planned.

 Internal releases are automatic and therefore
predictable.

 Requires sophisticated testing, CI, and CD
infrastructure.

Active stakeholder
participation. The stakeholders
who are affected by our
deployment strategy work with
our team in a “hands-on” manner
to plan the deployment. These
stakeholders include operations
staff, support staff, and release
managers (if any exist in the
organization). This planning
typically occurs throughout the life
cycle [AgileModeling].

 Results in a high-quality, realistic plan because the
people with the knowledge and skills participated.

 Acceptance of the plan is very high.

 Deployment stakeholders may not be available to
the required extent (because they have their “real
jobs” to do) or when their participation is most
needed.

Continuous planning. Our team
will work closely with deployment
stakeholders for input into our
plan, often via reviews.

 This is slow and potentially expensive due to the
need for multiple reviews.

 Significant potential for injecting wait time into our
overall delivery efforts.

 Results in a workable and acceptable plan.

Plan late. Deployment planning is
left until late in the life cycle,
typically the last few weeks of
Construction or even early in
Transition.

 This is risky, and may miss deployment windows
because the team could miss a cutoff date through
not getting into the release queue.

 If mistakes have been made, such as missing a
required task during development, they won’t be
found until late in the life cycle when they are
expensive to address.

 Potential to lengthen Transition due to injecting
wait time.

271

Automate Infrastructure

To make it easier to operate, monitor, and control our solution in production, we want to
build the appropriate scaffolding into our solution. By doing so, we make the operations and
support of our solution easier, thereby supporting our organization’s overall DevOps strategy.
This is often referred to as “infrastructure as code.” This infrastructure should be architected
into our solution, see Identify Architecture Strategy (Chapter 10) and Produce a Potentially
Consumable Solution (Chapter 17), and it may even be possible to reuse existing infrastructure
(see the Leverage and Enhance Existing Infrastructure process goal in Chapter 26).

Figure 19.3: The process of continuous integration.

272

Figure 19.4: The process of continuous deployment (CD).

Options (Not Ordered) Trade-Offs

Automated regression tests.
Tests/checks are automated and run
regularly by the team, often several
times a day. There is typically one or
more test suites developed for each
environment in Figure 19.4 [W].

 Increases confidence within the team to make
changes to their work because they know that
mistakes are likely to be caught quickly.

 Enables practices such as test-driven
development (TDD), behavior-driven
development (BDD), and continuous integration
(CI).

 Requires skill and discipline to automate tests.

 Very often legacy assets do not have sufficient
tests (yet), requiring investment to pay down that
technical debt.

Continuous integration
(CI)/Continuous deployment (CD)
pipeline. The combination and
integration of CI and CD tools. CI
tools automatically build, run
regression tests, and run
static/dynamic analysis tools (if any)
when something is checked in (see
Figure 19.3). CD tools automatically
deploy updated assets to the next
sandbox/environment when CI
succeeds at the current level (see
Figure 19.4) [W].

 The CI/CD pipeline automates a lot of onerous
and repetitive work, thereby freeing developers
to focus on adding value.

 CI ensures that your quality checks, such as
automated regression test suites and
code/schema analysis tools, are invoked
regularly.

 CD ensures that your work is regularly pushed
into more sophisticated environments and
quality assurance strategies, enabling us to find
potential problems quickly when they are less
expensive (on average) to address.

 Requires investment in CI/CD tools,
configuration, and education.

273

Options (Not Ordered) Trade-Offs

Feature access control. The solution
gives access to only the features and
data that an end user is allowed to
have—no more and no less. Access
control is a fundamental security
aspect [W].

 Enables granular and often real-time access
control to functionality (sometimes called
permissioning).

 Supports experimentation strategies such as
canary tests and split (A/B) tests by limiting end-
user access to certain features.

Feature toggles. A feature toggle is
effectively a software switch that
allows you to turn features on (and
off) when appropriate; also called
feature flags, feature bits, or feature
flippers [W].

 A common strategy is to turn on a collection of
related functionality that provides cohesive
business value (often described by an epic or use
case) all at once when end users are ready to
accept it.

 Supports turning off individual features when it
is discovered that the feature isn’t performing
well (perhaps the new functionality isn’t found to
be useful by end users, perhaps it results in lower
sales, and so on). This can alleviate the need to
invest in backout and restore logic when we go
to deploy.

 Enables us to test and deploy functionality into
production on an incremental basis.

Monitoring instrumentation. This
includes logging and real-time alert
functionality built into a solution. The
purpose is to enable monitoring, in
(near) real time, of solutions
operating in production [Kim].

 Enables people responsible for operating a
solution to detect when a problem starts to occur
before it becomes too serious.

 Logging provides valuable intelligence for
anyone debugging and fixing operational
problems.

 Supports real-time operations dashboards.

 Enables canary tests and split tests as it provides
the data required to determine the effectiveness
of the functionality under test.

Self-recovery. When a system runs
into a problem, it should do its best
to automatically recover and continue
on as before. Ideally, end users never
know that something was wrong.

 Provides a better/consistent experience to end
users.

 Reduces the operational burden on your
organization.

 Increases the reliability and availability of your
solutions.

Self-testing. Each component of
a solution includes basic tests to
validate that it can properly operate
while in production. When a problem
is detected, it should be
communicated via your monitoring
instrumentation.

 Increases the robustness and reusability of your
solutions.

 Supports deployment testing efforts once a
solution has been deployed into production (see
the Deploy the Solution process goal of Chapter
21).

274

Manage Assets

Our team will need to manage the assets that we create—source code, tests, deliverable
documentation, and so on—in some manner. The following table compares several common
options available to us.

Options (Ordered) Trade-Offs

Configuration
management (CM). We
track and control changes
to our assets, with
versioning and support for
baselines across assets [W].

 Requires some discipline and skill, and more importantly a
shared understanding within the team as to how to use the
CM tool consistently.

 Can be difficult for nontechnical stakeholders to
understand (at first).

 Enables us to improve the reliability of our assets.

 Enables baselining of related groups of assets and
restoration thereof.

 Supports regulatory compliance.

Version control. We track
and control changes to our
assets, including versioning
[W].

 Requires some discipline and skill, including a shared
understanding within the team to use the version control
tool consistently.

 Can be difficult for nontechnical stakeholders to
understand (at first).

 Supports restoration and low-risk forms of regulatory
compliance.

Shared folders. We
maintain our assets in a
collection of folders that is
easily accessible by team
members and potentially
stakeholders.

 Straightforward approach.

 Very difficult to restore previous versions of artifacts
without the use of tools that support versioning, such as
Dropbox or Google Drive.

 Does not support regulatory compliance.

Choose an SCM Branching Strategy

We need to identify our team’s branching strategy for our source code repository. A branch
is a copy or clone of all, or at least a portion of, the source code (and other assets that are used
to build our solution) within the repository. We branch our code to support concurrent
development, the capture of solution configurations, multiple versions of a solution, and
multiple production releases of a solution so that it may be worked on in parallel. When we
branch, we eventually need to integrate our changes back into the mainline branch/trunk. The
longer we wait to do so, the greater the chance of a “collision/merge conflict” with changes
made by someone else. A great resource is the book Configuration Management Best Practices by
Bob Aiello and Leslie Sachs [CM]. As you can see in the following table, there are many
branching strategies available to us, strategies that may be applied in combination.

275

Options (Not Ordered) Trade-Offs

Single branch (trunk based). As the
name suggests there is only the
mainline branch (the trunk).

 Straightforward approach.

 Well suited for DevOps-friendly strategies such as
continuous delivery (CD) and feature toggles.

 Merge conflicts are usually straightforward and easy
to address.

Branch by customer/organization.
A customized release created for a
customer or organization.
Standard features are developed on
the mainline branch, while
customer-specific features are
maintained on their branches.

 Short-term solution to delight a customer.

 Supports customer-specific functionality that is
more complex than what can be implemented via
configuration data.

 Requires a tenancy strategy that ensures privacy for
each customer.

 Potential to create a significant maintenance burden
over time as the number of supported customer
versions grows.

 Defects need to be analyzed to determine if they
pertain to standard functionality or customer-
specific functionality.

 Strategy needed to promote customer-specific
features to become “standard product” features on
the mainline branch.

Branch by developer/workspace.
Developers have their own private
branches to work on.

 A promotion strategy (where you update
ancestor/parent code versions) is required.

 A rebasing strategy (how we update
descendent/child code versions) is required.

 Often used in combination with other branching
strategies.

 Enables experimentation by developers.

 Enables review of changes in staging areas before
they are promoted to the trunk.

Branch by module/component. A
branch is created for a specific
module (or cohesive functionality
such as a component, subsystem,
library, or service) of the larger
solution. Effectively a single-
branch strategy for a module.

 Enables parallel, component-based development
teams.

 Requires a clean architecture.

 Requires system integration testing (SIT) across the
modules to ensure the overall solution works
together.

Branch by phase/quality gate. A
branch is created for a specific
project phase or approval stage.
Sometimes called a “waterfall
branching model.”

 Enables the team to continue working on new code
while we wait for the previous version to be
reviewed and approved.

 Any changes required by the review will need to be
implemented in the reviewed version of the code,
reviewed again and, when accepted, merged into the
mainline branch.

 May be required under strict interpretations of
regulatory compliance.

276

Options (Not Ordered) Trade-Offs
Branch by purpose. We only create
a new branch when it is absolutely
necessary. We must start work on a
new version but still need to
maintain the current version.

 Supports baselining of previous versions/releases if
required.

 Works well when we have a single release of a
solution that we wish to maintain, but still may need
to temporarily branch for defect fixes or to
temporarily support parallel development.

 All development can occur via a single-branch
strategy when previous releases are not maintained.

Branch by task/story. A branch is
created to work on a piece of
functionality, perhaps described as
a user story or usage scenario.

 Enables feature-based development teams.

 Code needs to be merged back into the mainline
branch.

 Opportunity for significant collisions when features
developed in parallel cause changes to the same
code files.

Branch by version/release. A new
branch is created for a release of a
solution while maintenance of
previous versions still occurs.
Version/release branches are often
created at the start of the Transition
phase (if you still have one) so that
developers can begin working on the
next/upcoming release.

 Enables us to maintain multiple versions of the
solution in production.

 Requires serial changes to code, with sequential
check-ins/outs.

 Adds overhead to maintenance of released versions
due to the need to make changes in the version
branch and then promote the changes to the trunk
and any appropriate version/release branches.

Choose Testing Strategies

We need to validate that our work meets the needs of our stakeholders via testing against the
needs of our stakeholders. The focus of this decision point is the overall approaches or
strategies that we choose to follow to write the tests. As you can see in the following table, we
have many choices available to us to combine as appropriate.

Options (Not Ordered) Trade-Offs

Automated regression testing.
Tests/checks are automated and
run regularly, potentially many
times a day [W].

 Requires skill and investment to write automated
tests.

 Existing legacy assets may not have sufficient tests, a
form of technical debt.

Behavior-driven development
(BDD). BDD is the combination
of test-first development (see
below), where we write
acceptance tests before we write
the production code, and
refactoring. Basically a form of
requirements-level functional
testing. Also known as
acceptance test-driven
development (ATDD) [W].

 The acceptance tests do double duty. Because we
write them before the code, the tests both specify the
detailed requirements and validate that our solution
conforms to them.

 Refactoring reduces our velocity in the short term.

 Refactoring increases velocity and evolvability in the
long term by reducing technical debt.

 It takes discipline to ensure tests are actually written
before the code.

 It takes time to write the tests.

 The tests themselves may have their own defects or
be poorly designed, increasing technical debt.

277

Options (Not Ordered) Trade-Offs
Continuous integration (CI).
Upon something being checked
into configuration management
(CM) control, the CI tool
automatically rebuilds the
solution by recompiling, running
regression test suite(s), and
running dynamic or static analysis
tools. See Figure 19.3 for an
overview of the CI process [W].

 Automates the onerous work involved with building
our solution.

 CI is a fundamental technical practice for agile teams.

 Requires investment in setting up our CI strategy, in
particular the development of automated regression
tests.

 Requires investment in training and team process
improvement, particularly around adoption of agile
quality practices and automated regression testing.

End-of-life-cycle testing. Any
testing activities that occur during
Transition or, if we have them,
during “hardening sprints.” Note
that Transition is minimally
“running our regression tests one
or more times and deploying if
successful.”

 When regression tests are fully automated then this
proves to simply be one last check before deploying.

 When significant testing and fixing occurs, it is an
indication that we need to improve our approach to
quality assurance earlier in the life cycle. In other
words, “shift testing left” in the life cycle.

Integration tests first. We will
focus our testing efforts by
writing integration tests first.

 Motivates the team to think through and show how
they are going to integrate their work, hopefully early
in the life cycle, thereby reducing overall technical
risk.

 Works well with a prove-the-architecture-with-
working-code strategy (see Prove the Architecture
Early process goal in Chapter 15).

 Requires the team to identify and agree to an initial
architecture strategy early in the life cycle (see
Chapter 10) so that they know what needs to be
integrated.

 Requires integration test skills.

Manual testing. This is scripted
testing based on the requirements
for the solution.

 Very expensive and time-consuming form of testing.

 Does not support agile/lean software development
very well because it doesn’t handle change easily.

 Although manual testing can often be outsourced to
people in low-cost countries, it often proves to be the
most expensive approach to testing due to the
overhead of producing detailed requirements
documents from which to base the scripts.

278

Options (Not Ordered) Trade-Offs
Parallel independent testing. An
independent test team works in
parallel to the delivery team(s),
see Figure 19.5, to perform
testing activities that the
development teams can’t easily
do. The delivery team(s) make
their builds available to the
parallel independent test team
(PITT) on a regular basis
(perhaps nightly or at least at the
end of an iteration). The PITT
takes these builds, integrates
them into their test environment,
tests them, and reports potential
issues back to the delivery
team(s) [PIT].

 Supports legal regulations that require some testing
to be performed by someone who is independent of
the development team, a separation of concerns
(SoC) issue.

 Enables organizations to support forms of testing
that are not economically viable for development
teams to perform. This includes system integration
testing (SIT) across a large program (a team of teams)
or testing requiring highly skilled people or expensive
tools (such as security testing).

 Great way to identify problems that got past the team
before the solution is shipped into production,
offering the opportunity for the team to learn and
improve their testing approach.

 Potential for the delivery team to become sloppy
regarding testing because they believe the PITT will
find any problems.

 Lengthens the time required for end-of-life-cycle
testing because the PITT needs to take one last run
at the solution, and maybe more if significant
problems are found, before it can be shipped.

Test-after development. A
developer writes a bit of code
(perhaps up to a few hours) and
then writes the tests to validate
that code.

 Reduces the feedback cycle between injecting a
defect into code and finding it. This in turn reduces
the average cost of fixing defects.

 A good first step toward TDD.

 Teams often find reasons to not write tests, often due
to time pressure.

 Requires skill and discipline.

 Many developers do not have a “testing mindset” so
they need to work closely, often through pair
programming, with people who do.

Test-driven development
(TDD). TDD is the combination
of test-first development (TFD),
which is writing automated
developer unit tests before the
production code, and refactoring.
Basically a form of design-level
functional testing [W].

 The automated tests do double duty in that they both
specify (because we write them before the production
code) and validate.

 TDD results in better code since it needs to conform
to the design of the unit tests.

 Gives greater confidence in the ability to change the
system knowing that defects injected with new code
will be caught.

 Refactoring is a necessary discipline to ensure
longevity of the application through managing
technical debt.

279

Figure 19.5: Parallel independent testing.

Choose Testing Types

An important question that we need to answer is what types of testing will we need to perform
while building our solution. Figure 19.6 depicts the Test Automation pyramid and Figure 19.7
depicts the Testing Quadrants [GregoryCrispin]. The test automation pyramid indicates the
various levels of testing our team will need to consider. Exploratory testing is depicted as a
cloud because it can occur at any time and at any level. Note that some people consider
exploratory testing, the act of probing a solution to see if it behaves in unexpected ways, to
be the only true form of testing. When we are manually following a test script, or when we
are running automated regression tests, then these “tests” are really checks that we run to
ensure that the solution still works as expected. For the sake of simplicity, in Disciplined Agile
(DA) we still refer to all of this work as testing (as opposed to testing and checking).

280

Figure 19.6: The test automation pyramid.

The agile testing quadrants of Figure 19.7, originally developed by Brian Marick, overview
some potential types of testing that we should consider adopting within the team. The
following table overviews and contrasts these strategies.

281

Figure 19.7: The agile testing quadrants.

Options (Not Ordered) Trade-Offs

Accessibility testing. A subset of
user experience (UX) testing
where the focus is on ensuring
that people with accessibility
challenges, such as color
blindness, vision loss, hearing
loss, or old age can still work with
the solution effectively [W].

 Helps to ensure our solution addresses
appropriate regulatory issues regarding
accessibility.

 Requires skills and knowledge around
accessibility issues and design thinking.

 Often requires collaboration with people who
have accessibility challenges.

Alpha/beta/pilot/canary testing.
Testing in production with a
subset of the overall user base.
Alpha, beta, and pilot testing is
typically a full release of the
system to a subset of users. A
canary test is typically a release of
a small subset of functionality to a
subset of users [W].

 Increases the chance you will build what
stakeholders want by getting feedback based on
actual usage.

 Limits the impact of a poor release to just a subset
of users.

 Requires the solution be architected to limit
access to a subset of users.

 In the case of alpha, beta, and pilot testing, people
will likely need to be informed that they are
involved with such a release.

282

Options (Not Ordered) Trade-Offs
Component testing. Tests a
cohesive portion of the overall
solution in isolation. A
“component” may be a web
service, a microservice, a user
interface (UI) component, a
framework, a domain component,
or a subsystem. In some ways, this
is a combination of unit testing
and system integration testing
where the component is
simultaneously the unit and the
system under test [W].

 Limits the scope of your testing effort, enabling
you to focus on that specific functionality.

 A form of functional testing that determines how
well a component works in isolation.

 Does not determine how well a component will
work when integrated with the rest of the
solution/environment.

Database testing. Databases are
often used to implement critical
business functionality and shared
data assets and therefore need to
be validated accordingly. Also
called data testing [W].

 Ensures that data semantics are implemented
consistently within a shared database.

 Identifies potential problems with data sources
before production usage.

 Database tests are often written as part of
application testing efforts, thereby increasing the
chance that localized data rules are validated
rather than organization-wide rules.

 Automated regression test suites for the data
source itself are required to ensure data
consistency across systems.

 Difficult to find people with database testing
skills because few existing data professionals have
database testing skills, and few application
developers understand the nuances of databases.

Exploratory testing. An
experimental approach to testing
that is simultaneously learning,
test design, and test execution
[W].

 Finds potential issues that would otherwise have
slipped into production, thereby reducing the
overall cost of addressing the problem (see Figure
19.2 earlier).

 Requires highly skilled testers who are good at
exploring how something works.

 Expensive form of testing that is mostly manual,
but the learning part can often be the most
efficient way to discover things quickly.

Functional testing (FT). Tests
the functionality of the solution as
it has been defined by the
stakeholders. This is a form of
black-box testing. Sometimes
called requirements testing,
validation testing, or testing
against the specification [W].

 Validates that what we’ve built meets the needs
of our stakeholders as they’ve communicated
them to us so far.

 The requirements often change, implying that our
automated functional tests will need to similarly
evolve.

 Behavior-driven development (BDD) and test-
driven development (TDD) strategies support FT
very well.

283

Options (Not Ordered) Trade-Offs
Performance testing. Testing to
determine the speed/throughput
at which something runs, and
more importantly where it breaks.
This is a form of quality attribute
(ility) testing. Sometimes called
load or stress testing [W].

 It can demonstrate that our solution meets
performance criteria.

 It can compare two or more solutions to
determine which performs better.

 It can identify which components of the solution
perform poorly under specific workloads,
enabling us to identify areas that need to be
refactored.

 Performance testing is highly dependent upon the
robustness of our test environment, the
implication being that we may need to make a
significant investment to test properly.

 Test results are short-lived in that they are
potentially affected by any change to the
implementation of the system.

Prototypes. A prototype of the
solution is developed, so that
potential end users may work with
it to explore the design. The
prototype typically simulates
potential functionality.

 Enables the team to explore the user interface
(UI) design without investing significant effort to
build it.

 Very effective when it isn’t clear how to approach
one or more aspects of the design.

 Potential to reduce the feedback cycle by getting
prototyped functionality into the hands of
stakeholders quickly.

 Requires investment in the development of
“throw-away” prototype code, which can be seen
as a waste.

Quality attributes (ility)
testing. The validation of the
solution against the quality
requirements, also called quality
of service (QoS) requirements or
nonfunctional requirements
(NFRs), for it. Figure 19.8
summarizes categories of
potential quality requirements.

 Because quality requirements drive critical
architecture strategies, this is a critical strategy to
ensure that our solution’s architecture meets the
overall needs of our stakeholders.

 Quality attributes apply across many functional
requirements, making testing difficult.

 Requires automated regression testing to ensure
compliancy as the functionality evolves.

Security testing. Testing to
determine if a solution protects
functionality and data as intended.
This includes confidentiality,
authentication, authorization,
availability, and nonrepudiation.
Security testing is a form of
quality attribute (ility) testing [W].

 Helps to identify potential security holes in our
solution.

 Security testing is a sophisticated skill.

 Commercial security testing tools are often
expensive.

284

Options (Not Ordered) Trade-Offs
Simulations. Simulation software,
sometimes called large-scale
mocks, is developed to simulate
the behavior of an expensive or
risky component of the solution
[W].

 Common approach when the component or
system under test involves human safety, when
the component is not available (perhaps it is still
under development), or when a large amount of
money is involved (such as a financial trading
system).

 Enables the team to test aspects of their solution
early in the life cycle because they don’t need to
wait for access to the actual component that is
being simulated.

 Can be expensive to develop and maintain the
simulator.

 You’re not testing against the real functionality.

 The results from the testing are only as good as
the quality of the simulation.

Split (A/B) testing. We produce
two or more versions of a feature
and put them into production in
parallel, measuring pertinent
usage statistics to determine
which version is most effective.
When a given user works with the
system they are consistently
presented with the same feature
version each time, even though
several versions exist. This is a
traditional strategy from the 1980s
[W], and maybe even farther back,
popularized in the 2010s by Lean
Startup [Ries].

 Enables us to make fact-based decisions on actual
end-user usage data regarding what version of a
feature is most effective.

 Supports a set-based design approach (see
Explore Solution Design below).

 Increases development costs because several
versions of the same feature need to be
implemented.

 Prevents “analysis paralysis” by allowing us to
concretely move on.

 Requires technical infrastructure to direct specific
users to the feature versions and to log feature
usage.

Story testing. This is a form of
functional testing (FT) where the
functionality under test is
described by a single user story.
Can be thought of as a form of
acceptance testing when a
stakeholder representative, such
as a product owner, performs it.

 Validates that we’ve implemented the story as
required by our stakeholders.

 The details of the story will evolve over time,
implying that our automated tests will need to
similarly evolve.

 Danger that this is effectively component testing
for a story—cross-story integration testing will
need to still be performed, such as
workflow/scenario testing.

System integration testing
(SIT). Testing that is carried out
across a complete system, the
system typically being the solution
that our team is currently working
on [W].

 Requires skill and knowledge on the part of the
person(s) doing the testing.

 Integration tests can be long running and often
must be run in their own test suite.

 Integration testing requires a sophisticated test
environment that mimics production well.

285

Options (Not Ordered) Trade-Offs
Unit testing (UT). Testing of a
very small portion of
functionality, typically a few lines
of code and its associated data.
Sometimes called developer
testing, particularly in the scope of
test-driven development (TDD)
[W].

 Many developers still need to gain this skill (so
pair with testers).

 Ensures that code conforms to its design and
behaves as expected.

 Limited in scope, but critical, particularly for
clear-box testing.

User acceptance testing
(UAT). The solution is tested by
its actual end users to determine
whether it meets their actual
needs (which may be different
than what was originally asked for
or specified). UAT should be a
flow test performed by users [W].

 Provides valuable feedback based on actual usage
of the solution.

 Expensive because it is performed manually.

 Very expensive form of regression testing (it’s
much better to automate regression tests).

 Requires stakeholder participation, or at least
stakeholder representatives such as product
owners.

 Often repeats FT efforts, so potentially a source
of process waste.

User experience (UX) testing.
Testing where the focus is on
determining how well users work
with a solution, the intention
being to find areas where usage
can be improved. Sometimes
called usability or consumability
testing [W].

 Requires UX skills and knowledge that are
difficult to gain.

 May require significant investment in recording
equipment and subsequent review of the
recordings to identify exactly what people are
doing.

 Enables us to determine how the solution is used
in practice, and more importantly, where we need
to improve the UX.

User interface (UI) testing.
Testing via usage of the user
interface. This can be performed
either manually or digitally using
UI-based testing tools. Sometimes
called glass testing or screen
testing [W].

 Straightforward step to move from manual
testing to automated testing because the manual
test scripts can be written as automated UI tests.

 Expensive way to automate functional testing
(FT), even given record/playback tools.

 Tests prove to be very fragile in practice.

 Difficult to maintain automated tests because the
tests break whenever the user interface evolves.

Workflow/scenario testing.
Testing where the focus is on
determining how well a solution
addresses a specific business
workflow or usage scenario. A
scenario is described to one or
more end users and they are asked
to work through that scenario
using the solution. This is focused
UX testing [W].

 We need to have an understanding of the overall
workflow, which typically goes beyond stories
and even epics.

 See the trade-offs associated with UX testing.

286

Figure 19.8: Potential categories of quality requirements.

Verify Quality of Work

We need to verify that our solution complies with appropriate regulations and organizational
guidelines. This is important because this guidance motivates the team to produce better
quality work. As you can see in the following table, this can occur manually via reviews and
nonsolo work strategies or in an automated fashion via digital tools.

Options (Ordered) Trade-Offs

Static analysis. A static analysis
tool, sometimes called a static
code analysis tool, parses the
implementation code/definition
without running it to look for
potential problems. There are
tools to perform static analysis of
the user interface, source code,
and database schemas [W].

 Provides valuable insight into where quality
problems exist within our implementation.

 Static analysis tools find most of the problems that
would traditionally be found by reviews.

 Can find an overwhelming number of problems in
the beginning, which is a reflection of the amount
of technical debt we face.

 Outputs of these tools can be fed into our team
dashboard to provide real-time quality information
to the team and to whomever is governing us.

 Requires us to configure the tool to reflect our
organizational development guidelines.

Dynamic analysis. A dynamic
analysis tool, sometimes called a
dynamic program analysis tool,
executes a working program to try
to detect problems. There are
tools to perform dynamic analysis
of the user interface, source code,
and database schemas [W].

 Provides valuable insight into potential quality
problems with our solution. This includes security,
performance, memory leaks, race conditions, and
reliability problems.

 Can find an overwhelming number of problems in
the beginning, which is a reflection of the amount
of technical debt we face.

 Outputs of these tools can be fed into our team
dashboard to provide real-time quality information
to the team and to whomever is governing us.

 Some dynamic analysis tools, particularly security-
oriented ones, are expensive.

287

Options (Ordered) Trade-Offs

Nonsolo work. This is a collection
of collaborative techniques where
two or more people work together
to perform a task. These
techniques include pair
programming (two people
working at one workstation) [W],
mob programming (several people
working together at a single
workstation) [W], and modeling
with others (mob modeling).

 Effectively, a continuous review that happens in
parallel to the work being performed.

 Enables skill and knowledge sharing within the
team.

 Increases the chance that team members will
understand and follow common development
conventions. This is particularly true when
promiscuous pairing or mobbing occurs.

Definition of done (DoD). A
DoD defines the minimum criteria
that a work item must meet before
our stakeholders will accept it as
completed/done work. The DoD
typically addresses levels of testing
and required documentation
[DoD].

 A DoD increases the trust of stakeholders in the
ability of the team to deliver.

 A DoD is a simple service-level agreement (SLA)
that ensures the team produces work that meets the
needs of stakeholders.

 DoDs become complex with practices such as
Continuous Documentation – Following Iteration
(see Produce Potentially Consumable Solution in
Chapter 17) or parallel independent testing (see
Choose Testing Strategies above) because some
work isn’t truly “done” by the end of the iteration.

Informal reviews. A strategy
where one or more people provide
feedback about an asset. The
feedback is often verbal but may
be written as well.

 Reviews can find qualitative problems that analysis
tools often miss.

 Informal reviews can be a valuable education
opportunity as they provide opportunities for the
team to share and discuss other ways of
approaching a problem.

Formal reviews. A structured, and
often heavyweight strategy where
one or more people provide
feedback about an asset. Feedback
is often captured in written form
although it can be verbal as well.

 Reviews can find qualitative problems that analysis
tools often miss.

 Supports regulatory compliance needs, particularly
in life-critical situations.

 Can be expensive and time-consuming.

 Formal reviews can be used for education purposes
but are typically focused on finding potential
problems.

Maintain Traceability

Traceability refers to the ability to track (trace) the relationships between a requirement/need,
the aspects of our design/architecture that address the requirement, the implementation of
the requirement, and the test(s) that validate it. There are several reasons why we should be
interested in traceability, including compliance to external regulations and support for impact
analysis. As the name implies, impact analysis is the act of determining how a potential change
will affect, or impact, the existing solution and supporting artifacts.

288

Options (Ordered) Trade-Offs

Generate from tools. Tools such as
the Atlassian suite or Microsoft
Team Foundation Server (TFS)
provide automatic traceability for
who, what, when, and where (and
optionally why) any change is
made to any artifact.

 As accurate as the work captured in the tools.

 Traceability is in effect “built into,” or is a side effect
of, the process. It is effectively free.

 May require sophisticated parsing when multiple
tools, or instances of the same tool, are used.

 This strategy can devolve into manual maintenance
(see below) when the focus of creating the
references shifts to traceability rather than simply
getting the work done.

Generate from test code. When
teams have comprehensive test
suites the test code effectively
contains the traceability
information. Detailed
requirements (captured as
acceptance tests) and similarly your
detailed design (captured as
unit/developer tests) both invoke
the code, therefore you have the
heart of traceability.

 We still need a strategy to implement traceability
from high-level artifacts such as user stories and
architecture models.

 Detailed traceability is in effect “built into,” or is a
side effect of, the process. This aspect of traceability
is effectively free as a result.

 Requires sophisticated parsing of test code,
potentially from multiple sources (e.g., from BDD
test tools, from xUnit, etc.)

 Traceability is only as good as your test coverage.

None. The team decides to not
maintain any form of traceability at
all.

 Zero overhead.

 Not regulatory compliant.

 Impact analysis must be performed another way,
such as through conversations or through making a
change to see what breaks.

Maintain manually. The team
maintains traceability links
between artifacts, often within a
separate tool such as a database, a
spreadsheet, or traceability-
specific tool such as IBM Rational
DOORS Next Generation.

 This is a very expensive strategy due to the manual
effort to develop and maintain the traceability
information.

 The resulting traceability information often proves
to be inaccurate because the information isn’t
consistently updated in sync with changes to the
artifacts.

 Tends to slow development down with the work
required to maintain traceability. Basically, the team
is “traveling heavy” as Extreme Programming (XP)
warns us.

289

SECTION 4: RELEASING INTO PRODUCTION

The aim of Transition is to successfully release a consumable solution into production or the
marketplace. Ideally, Transition is a fully automated activity that runs in minutes or hours,
rather than a phase that takes days or weeks. The average agile/lean team spends six work
days on Transition activities, but when you exclude the teams that have fully automated testing
and deployment (which we wouldn’t do), it’s an average of 8.5 days [SoftDev18].
Furthermore, 26 % of teams have fully automated regression testing and deployment, and
about 63 % perform Transition in one day or less. This section is organized into the following
chapters:

 Chapter 20: Ensure Production Readiness. Verify that the solution is technically ready
to ship and that stakeholders are willing to receive it.

 Chapter 21: Deploy the Solution. Deploy the solution into production, and verify that
the deployment was successful.

291

20 ENSURE PRODUCTION READINESS

The aim of the Ensure Deployment Readiness process goal, shown in Figure 20.1, is to
determine whether we can safely deploy our solution into production. In many ways, this
process goal is the embodiment of the
Production Ready milestone depicted in
Figure 20.2 and described in Chapter 6.
Remember that Disciplined Agile Delivery
(DAD) teams produce consumable solutions,
not just “working software.” Yes, working
software is nice, but a consumable (usable +
desirable + functional) solution (software + hardware + documentation + process +
organization structure) actually gets the job done. Although our team should have produced
a potentially consumable solution all the way through Construction, this is our last chance to
ensure the solution is in fact consumable before we deploy it to our stakeholders. This goal is
important because it reduces the risks associated with deployment by ensuring that the team
is technically ready to ship and that stakeholders are prepared to receive new functionality.

Figure 20.1: The process goal diagram for Ensure Production Readiness.

Figure 20.2: The DAD risk-based milestones.

It’s important to note that this goal reflects the realities faced by teams that are following
the project-based life cycles: the Scrum-based Agile life cycle and Kanban-based Lean life
cycle. Teams following these life cycles tend to release into production every few months (or
more) and have not yet completely automated their regression tests nor adopted the
continuous integration (CI)/continuous deployment (CD) pipeline required to evolve into
one of the two continuous delivery life cycles. When a team has successfully migrated to a
continuous delivery life cycle, they will have either automated the activities encompassed by

Key Point in This Chapter

 The solution/product should be
technically ready to ship and the
stakeholders should be ready to
receive it.

292

this goal or alleviated the need for them by taking the low-risk approach of more frequently
deploying small changes into production.

When it comes to the cadence of deployments, we like to distinguish between three
categories:

1. Irregular deployment. There is a long time between deployments, often weeks or
months or even years. Deployments may be planned, perhaps to meet a fixed delivery
date, or may be impromptu.

2. Regular deployment. There is a consistent cadence to when we deploy our solution.
For example, we could choose to have nightly releases, weekly releases, biweekly
releases, monthly releases, quarterly releases, and so on.

3. Continuous deployment. We deploy our solution, or at least portions of it, many
times a day. If something builds successfully in one environment/sandbox, then it is
automatically deployed to the next environment.

Ensure Technical Readiness

We need to ensure that we are technically ready to ship—that our solution is properly tested,
the documentation is up to date, and that our deployment scripts are complete. The following
table describes a collection of potential strategies or activities that our team may choose to
follow.

Options (Not Ordered) Trade-Offs

Alpha testing. Put out a
limited/early version to a subset of
users [W].

 It can be difficult to find end users willing to invest
the effort in working with an alpha version of your
product who will also actively provide feedback and
even work with you to improve it.

 If you have the right technical writer on the project,
alpha testing is a good task for them. It gives a head
start on the user manuals and can provide input for
other deliverables.

 People involved with alpha testing can be frustrated
when functionality that they tested changes
dramatically, or is removed, in the final release of
the product.

 Alpha testing takes time, at least days if not weeks,
thereby increasing the length of transition.

 Alpha testing can be performed in parallel to
Construction if need be.

Data migration preparation. When
new functionality is deployed,
there may be a need to deploy
corresponding changes to data
sources (these changes are often
the result of database refactorings
made during Construction). This
is also called data conversion.

 Data test tools are often not in place, requiring
manual testing in some cases.

 Some data migrations are risky in that they are
immutable and cannot be backed out.

 There is the potential for significant overhead if
traditional data techniques are still in place in the
organization. It is possible, and highly desirable, to
take an agile approach to data activities (see the Data
Management process blade [AmblerLines2017]).

293

Options (Not Ordered) Trade-Offs
Deployment testing. We want to
validate that our deployment
scripts work as intended by testing
them in our preproduction
environments. Note that with
continuous delivery (CD) or
regular internal releases, your
scripts will already be well tested
by now.

 Increases the chance of successful deployment.

 Increases the cost and time required for Transition.

End-of-life-cycle testing and
fixing. Minimally, we need to run
our automated regression test suite
one more time. Furthermore, if we
have a parallel independent test
(PIT) effort then we need to wait
for that testing to finish. If any
serious issues are found, we will
need to address/fix them before
deployment.

 Ensures that our solution is of sufficient quality.

 When user acceptance testing (UAT) and system
integration testing (SIT) are left until the end of the
life cycle, instead of performed continuously
throughout Construction, the Transition phase can
take many weeks.

 Takes time, and if serious problems are found it can
force us to extend or even postpone our
deployment date.

Finalize deployment plan. If we
have not yet finalized the
deployment plan (which should
have been developed during
Construction), then we need to do
so now. Note that with continuous
deployment (CD), the plan simply
becomes “we deploy upon a
successful build.”

 Helps us to gain agreement with key stakeholders as
to how we’re going to deploy.

 Reduces risk through identification of the points in
the deployment process where we need to make a
go/no-go decision that we can potentially back out
from.

Finalize documentation.
Deliverable documentation (user
manuals, operations guides,
system overviews) is an important
part of the overall solution. This
documentation must be in sync
with what is being delivered, and if
it is not yet finished then it needs
to be.

 When documentation has been left to the end,we
only need to write the documentation for the end
result, reducing the overall documentation work.

 Extends timeline to deploy if documentation has
been left until late in the life cycle.

 The team may have forgotten critical information by
this point.

Pilot/beta testing. We may decide
to deploy our solution to a subset
of our end users to test our
solution via live usage of it. Such
testing may take hours, days, or
even weeks.

 Reduces risk by limiting the number of people
initially affected by a release.

 Extends timeline for the overall Transition phase
because we need to wait for the pilot/beta test to
run.

Ensure Stakeholder Readiness

Just because we are technically prepared to release our solution, that doesn’t mean our
stakeholders are automatically able to receive the solution, therefore we may have some work
to do to get them ready. Remember that our stakeholders are a diverse group of people,
including end users, their managers, finance professionals, operations staff, support/help desk

294

engineers, the sustainment team (who may be us), and many more. The point is that we need
to do what it takes to ensure that all key stakeholders are ready, not just end users.

The larger the release, or the more complex that it is, the more work we will need to do to
ensure that our stakeholders are ready. When we release a “big thing,” the riskier that release
is, the greater the change for our stakeholders, the more help they will need to learn the new
version, and so on. This is why it’s important to have very regular releases, say every few weeks
or more often, or better yet continuous delivery. The more often we release into production,
the smaller the actual changes are, which in turn is less risky and requires less support to be
successful.

Options (Not Ordered) Trade-Offs

Communicate deployment. We
should inform our stakeholders
that we are releasing the solution
into production. Note that for
irregular and long regular releases
(quarterly or more) we should have
started our communication efforts
toward the end of Construction.

 Helps to set accurate expectations with our
stakeholders as to what they’re going to receive and
when.

 Works best with active stakeholder participation.

 This is typically a nonissue for continuous deployment
or very regular (weekly or less) deployments because
what is being deployed is small and by now our
stakeholders know that new functionality is released
constantly.

Prepare support environment. Our
support/help desk staff must have
updates to their environment (if
one exists) deployed either before
or at the same time that changes to
the production environment are
deployed.

 Allows our support engineers to have access to our
solution so that they have time to learn about new
features before they are required to support end users.

 Works best with active participation of the support
engineers.

 This is typically a nonissue when we have adopted a
DevOps (“you build it, you run it”) strategy.

Train/educate stakeholders. The
larger the change being released
into production, the greater the
impact of that change on our
stakeholders, therefore the greater
their need for training and
education (T&E) to understand
how to work with what is being
deployed. This T&E may be virtual
online training, overview videos,
face-to-face classroom training,
written instructions, or
combinations thereof.

 Helps stakeholders, particularly end users, to become
effective using the solution quicker.

 Increases the consumability of, and the chance of
success for, your solution.

 Requires time and investment to prepare training
materials.

 Requires time and investment to deliver the training
materials.

295

21 DEPLOY THE SOLUTION

The aim of the Deploy the Solution process goal is to provide options for how to successfully
release our solution into production. Many
Disciplined Agilists’ first reaction to this is:
“Well, why don’t we just completely automate
this?” And they’re right, we should fully
automate deployment. This process goal is
important because it captures several strategies
for automating deployment, it provides several
strategies for releasing our solution into
production, it describes what needs to be
performed to successfully release into
production, and it describes options for how
we can ensure our release was in fact
successful.

Figure 21.1: The process goal diagram for Deploy the Solution.

To effectively deploy our solution, we should consider several important questions:

 To what extent will we automate the deployment process?

 What strategy will we follow to release into production (this time)?

 What activities must we perform to release our solution?

 How will we validate that the release was successful?

Key Points in This Chapter

 Your end goal should be to
automate the entire deployment
process, decreasing both the cost
and risk of releasing into
production.

 Smart teams validate that they’ve
successfully released into
production, and better yet, strive to
determine whether they’ve delighted
their customers.

296

Automate Deployment

From a Disciplined Agile Delivery (DAD) point of view, as well as a DevOps point of view,
we want to automate as much of the deployment process as we possibly can. Having said that,
it appears that only 26 % of agile/lean teams have done so, although another 37 % of teams
appear to be close in that it takes them less than a day to deploy [SoftDev18]. This reduces
the risk and cost of release, therefore making it viable to release more often and thereby
increase our ability to react to changing stakeholder needs more effectively. The following
table explains several options for the level of automation that we can achieve.

Options (Ordered) Trade-Offs

Continuous deployment (CD).
The solution is automatically
deployed through all internal
testing environments and into
production without human
intervention [W].

 Enables teams to rapidly address changing
stakeholder needs.

 Low-risk and low-cost approach because everything
is automated.

 Requires investment to put the automation
infrastructure in place.

 By logging information about the deployment, we
support separation of concerns (SoC), which is
required for some regulatory compliance.

Deployment script. The
technical aspects of the release
process are fully automated and
run from a single script (which
may in turn invoke other scripts).
Someone is required to determine
whether it is safe to deploy (see the
Accelerate Value Delivery process
goal of Chapter 19) and then run
the deployment script to perform
the release. Sometimes this is
called “push the deploy button.”

 Very close to a CD strategy.

 Requires investment to put the automation
infrastructure in place.

 Low-risk but slow approach due to the need for
human intervention.

 Very often an indication that management hasn’t
quite adopted a DevOps mindset.

 Often justified by the need to support separation of
concerns (SoC), but CD accomplishes this more
effectively (see above).

Deployment instructions. With
this approach, there are written
instructions describing a collection
of steps to manually follow. Very
often the steps are to run a series
of deployment scripts and then act
on the results.

 A brute-force strategy for deploying our solution
into production.

 Slow, risky, and expensive.

 The deployment instructions are often not well
tested, and it’s only until we try to deploy that we
discover problems.

 Prevents teams from releasing into production
regularly, motivating longer release cadences, which
thereby reduces the opportunity for feedback and
overall risk to our team.

Release Strategy

We need to identify what type of release we are performing. Are we releasing to our entire
user base or just a subset? Are we running an experiment or is this a full product release? Are
we releasing the full solution or a subset of features? Is the functionality turned on or off?
Needless to say, we have options to consider as shown in the table below.

297

Options (Not Ordered) Trade-Offs

Canary release/dark launch.
Release to a small subset of users.
This is sometimes called a pilot
test, alpha test, or beta test [W].

 Reduces the risk of deployment by limiting the
potential impact of a mistake.

 Provides an opportunity for “live feedback” from
actual end users.

 Increases overall time to deploy because we need to
wait, and then potentially act upon feedback from the
release.

 We may require multiple canary releases before we
can safely release to our entire end-user base.

 We need some way to restrict access to a subset of
users, often via access control or feature toggles
architected into our solution.

Cold switchover. Deploy the
solution, or a portion thereof, by
effectively writing over the
current version.

 Easy to automate.

 Runs the risk of needing to restore the previous
version if this release goes poorly.

Continuous batches. We batch
up dozens or even hundreds of
small changes and then deploy
them as a single group.

 Enables us to support what appears to be a
continuous deployment (CD) strategy for
developers.

 Enables us to target our deployments to defined
release windows, often during low-usage periods.

 The larger the batch, the greater the chance that
changes will collide/conflict with one another. This
can be difficult to detect or debug.

 Increases the cycle time of your releases.

Functionality-off release. New
functionality, which could be
very granular, is released into
production but the functionality
is currently turned off. End users
will not have access to this new
functionality until it is turned on.

 We safely deploy functionality in small, low-risk
“chunks.”

 We can build up to sophisticated functionality
gradually, then toggle it on at once to offer interesting
new features to end users.

 “Turned off” functionality may have side effects for
existing functionality if it isn’t truly turned off. Be
careful.

 We need to have feature toggles, or something similar,
architected into our solution (see Chapter 10).

Functionality-on release. New
functionality is released into
production and is immediately
available to end users.

 Easy to automate.

 Runs the risk of needing to restore the previous
version, or toggle off the functionality if we can, if
this release goes poorly.

298

Options (Not Ordered) Trade-Offs
Hot switchover (blue/green
deployment). We run two parallel
versions of our production
environment, one called blue and
the other called green (we can call
them anything we want). If the
current version of the solution is
running in blue then we deploy
the new version to green and test
it appropriately in there. Once it’s
ready, we switch over production
from blue (the current version of
our solution) to green (the newly
installed version).

 Low-risk way to support release into a complex
environment.

 Very safe as it is easy to back out to the last version.

 Expensive because it requires two copies of our
production environments. However, this can be
mitigated if we’re deploying into the cloud as we only
pay for the additional environment when we need it.

Incremental/rolling release. We
release our solution to a few
servers, then a few more, and so
on until it is deployed across all
servers.

 The system remains operational during the release
process.

 Low-risk approach as it enables us to back out of the
release fairly easily, or at least stop and fix things.

 Risk of inconsistent business rules running in parallel
during the rollout.

 Supports international versions as we can release
each version when it is available.

Micro deploys. We have many,
potentially thousands, of
deployments a day. Often used
with the functionality-off release
strategy.

 We safely deploy functionality in small, low-risk
“chunks.”

 Requires investment to put the automation
infrastructure in place.

 Supports continuous delivery (CD) life cycles.

 Can be difficult to determine when a specific version
of a solution has been released (it’s always being
released), which can be a problem for some
regulatory regimes.

Parallel run. We run both the new
version of the solution and the
previous one simultaneously for a
given period of time. Once we’re
convinced the new version runs
properly, we turn off the old
version.

 Works well in situations where we are doing a direct
replacement of an existing legacy system.

 Increases cost to deploy because it typically requires
dual entry of data by end users.

 Requires sufficient production infrastructure to run
both versions.

 Requires a strategy to resolve any operational
differences during the period where both versions are
run in parallel.

299

Options (Not Ordered) Trade-Offs
Toggle release. A release where
we turn/toggle a group of
functionality on or off. The
functionality would have been
previously deployed via one or
more functionality-off releases.

 We can build up to sophisticated functionality
gradually, then toggle it on at once to offer interesting
new features to end users.

 When we have production problems, perhaps
because of a failed release or a security attack, we can
“back it out” by turning off the misbehaving
functionality.

 We need to have feature toggles architected into our
solution (see Chapter 10).

Release Into Production

There are many activities that we may be required to perform to successfully release our
solution into production (as well as into any support, demo, and test environments as
appropriate). On average, agile/lean teams release once every 45 calendar days although 30 %
release at least weekly [SoftDev18]. The following table explains key activities that we may
need to perform as part of our deployment effort.

Options (Not Ordered) Trade-Offs

Close out existing transactions.
When a real-time system, or
component of it, is updated in
production, we need to ensure that
it is not in the process of processing
any transactions to ensure the
integrity of the transactions.

 Ensures the integrity of transactions.

 Difficult for systems with long-running transactions
because we need to wait for them to complete.

Back up existing data. We need
to back up our existing data if we
can potentially lose that data as
the result of deployment.

 Required when we do not have an adequate data
regression testing strategy in place.

 This is critical for large releases due to the increased
chance of defects, particularly with a cold switchover
release strategy.

 Difficult with real-time or very large amounts of
data.

Restore previous data. If we
choose to back up our data due to
the risks involved with the release,
we also need to be prepared to
restore our data to the previously
backed up state.

 See back up existing data.

 May not be possible because some data changes
cannot be reversed.

Restore previous version. When a
release has failed, and when we do
not have the ability to toggle it off
or address the problem with a
patch, then we will need to restore
the previously backed up
functionality and data.

 Requires us to have previously backed up the
functionality and data.

 The restore can also fail, particularly when we are
taking a cold switchover release strategy.

300

Options (Not Ordered) Trade-Offs
Migrate source data. We need
to apply any data changes,
including database refactorings, if
any, that were implemented since
the last release.

 Can take a significant amount of time.

 Some data migrations are one way only and cannot
be reversed, and are therefore very risky in practice.

Deploy solution components.
We need to deploy the
functionality of our solution, or
portions thereof.

 Contrary to popular belief, this isn’t the only activity
required to deploy.

Make solution available. Once
the solution, or portion of it that
that we’re currently targeting, has
been fully and successfully
deployed, we need to make it
available to the appropriate users.

 This is the point in time that stakeholders consider
the solution to be officially deployed.

 Easily implemented with a combination of
functionality-off and toggle release strategies (see
above).

Log the deployment. We should
record what we’ve deployed,
when it happened, and who/what
triggered the deployment.

 Provides important insight for the team regarding
the deployment.

 Supports governance via dashboard technology.

 Supports regulatory compliance, in particular by
providing proof of separation of concerns (SoC).

Enable support system. Any
updates that we make to
production should be reflected in
our support system (if we have
one separate from production).

 This may need to occur before solution deployment
to support training of support engineers.

 Often an important aspect of your service-level
agreement (SLA) with customers.

Communicate deployment. We
may need to communicate to our
stakeholders that we’ve
successfully deployed.

 Important for irregular release environments to help
set stakeholder expectations.

 Often an important aspect of your service-level
agreement (SLA) with customers.

 Becomes annoying in a CD or very regular release
environment. In these cases, logging supported by
dashboards or a “what’s changed” document may be
sufficient.

Validate Release

We need to validate that our deployment has been successful. Have we deployed exactly what
we thought we deployed and no more? Has our release been made available to the appropriate
end users? Are our stakeholders delighted with what they’ve received? As you see in the
following table, there are several ways that we can answer these questions.

Options (Ordered) Trade-Offs

Production deployment
testing. We have automated tests
that run after we deploy to verify
that we have deployed exactly
what we thought we would
deploy, no more and no less.

 Ensures that the deployment worked as expected, or
detects any problems if not.

 Can be difficult in complex operational
infrastructures, or when hardware runs autonomously
(such as with satellites or military drones).

 Supported by self-testing functionality (see the
Accelerate Value Delivery goal of Chapter 19).

301

Options (Ordered) Trade-Offs
Active stakeholder participation.
Actual end users, or more
accurately people whom we
believe are using the solution, are
contacted directly to determine
whether and how they are using
the solution.

 We potentially obtain rich and often critical feedback
about the solution.

 Can be expensive to collect and then analyze the
information.

Measure usage. To determine
whether our solution is being used
successfully, we use operational
usage data, such as what
functionality is being invoked in
our solution, the level of sales
generated by our solution (in the
case of commerce-oriented
systems), the amount of
information provided, and similar
measures.

 Provides (near) real-time insight to the team
regarding operational usage of our solution.

 Requires instrumentation within the solution, which
can affect performance.

Stakeholder satisfaction
survey. Do we know what our
stakeholders actually think about
the new release of our solution?

 It is a skill to create an effective, concise survey that
provides useful data. A very useful question is the net
promoter score (NPS): How likely are you to
recommend this new feature to a colleague? (Not
likely at all) 0 to 10 (Extremely likely).

 Enables us to potentially answer whether we have
fulfilled the Delighted Stakeholders milestone of
Figure 21.2.

 People often perceive surveys as annoying and will
often choose to ignore them.

 To increase the response rate, we can target active
users of the new version, people experiencing
problems with the system (something we can
determine from usage metrics), and people who have
responded to surveys in the past. However, doing
this runs the risk of biasing/skewing the results.

None. We trust that the release
was successful.

 Easy to implement.

 Production problems may be exacerbated because it
takes longer to find them.

302

Figure 21.2: The DAD risk-based milestones.

303

SECTION 5: SUSTAINING AND ENHANCING YOUR TEAM

The aim of the ongoing process goals is to describe common outcomes that support the team
and/or help to make it more effective. This section is organized into the following chapters:

 Chapter 22: Grow Team Members. Support people in improving their skills and
knowledge.

 Chapter 23: Coordinate Activities. Coordinate activities both within the team and with
other teams.

 Chapter 24: Evolve WoW. Choose and evolve the team’s way of working (WoW).

 Chapter 25: Address Risk. Identify, assess, and address risks appropriately.

 Chapter 26: Leverage and Enhance Existing Infrastructure. Reuse and improve
existing assets, including functionality, data, and other artifacts within our organization.

 Chapter 27: Govern Delivery Team. Solution delivery teams will be governed, and they
deserve to be governed well.

305

22 GROW TEAM MEMBERS

The Grow Team Members process goal, overviewed in Figure 22.1, captures options for
providing opportunities for people to improve.
This process goal is highly related to the People
Management and Continuous Improvement
process blades [AmblerLines2017] that focus
on helping people at the organization level.
There are several reasons why this goal is
important:

1. People, and the way we work
together, are key to our success.
Remember the agile value:
“Individuals and interactions over processes and tools.”

2. Motivated people are effective people. In Drive: The Surprising Truth About What
Motivates Us (2011), Daniel Pink argues that autonomy, mastery, and purpose are what
motivates people. This process goal focuses on providing opportunities for people to
master their craft (the Develop Common Vision process goal, see Chapter 13,
promotes the idea of teams with purpose and the Coordinate Activities process goal,
see Chapter 23, enables autonomy).

3. Solution delivery is a team sport.8 Great teams are composed of people who want to
work and improve together.

Figure 22.1: The goal diagram for Grow Team Members.

8 To paraphrase Alistair Cockburn.

Key Points in This Chapter

 We need to continually invest in our
people, helping them to learn and
enhance their skills.

 Our aim should be to sustain and
nurture an awesome team made up
of awesome people.

306

This ongoing process goal describes how we will support our team members in their
personal and professional growth. To be effective, we need to consider three important
questions:

 How will we help people improve their skill sets?

 How will we provide feedback to team members to help them grow?

 How will we sustain the team over time to enable people to grow?

Improve Skills and Knowledge

This decision point focuses on strategies to provide opportunities to hone our skills and
knowledge to increase our mastery. Figure 22.2 overviews an extension to Noel Burch’s
Hierarchy of Competence, showing Burch’s original four learning levels and an additional fifth
level to reflect a self-learning
mindset. This hierarchy reflects our
learning journey for a given skill or
knowledge area. You may be at level
4 (unconscious competence) when it
comes to data analysis but level 1
(unconscious incompetence) when it
comes to exploratory testing. Not
only do we want teams that are
cross-functional, as individuals we
want to become cross-functional as
well. A common strategy in the agile
community is to strive to become a
“generalizing specialist,” someone
with one or more specialties
(perhaps you love data analysis, user
acceptance testing, and R
programming) who also has at least
a general knowledge of their
profession (in this case, solution
delivery) and the domain that they’re
working in. A generalizing specialist
is the happy medium between being
a specialist, someone who knows a
lot about a narrow competency, and a generalist, someone who knows a little about a wide
range of competencies. Having team members with a more robust set of skills is a key strategy
toward leaning out your team and eliminating waste (you’re less likely create additional artifacts
to cater to specialists and less likely to have to wait for them). As you can see in the following
table, there are many ways that our organization can support us in improving our skills and
knowledge.

307

Figure 22.2: The hierarchy of competence.

Options (Not Ordered) Trade-Offs

Assess skills/knowledge.
We rank someone, or
sometimes self-rank, against
a list of skills or knowledge
areas.

 Helps to identify competency areas that someone needs to
work on.

 Enables us to identify someone who would potentially bring
new skills into our team.

 When people perceive that this information is being used to
judge them, there is the danger that they will try to game the
data to make themselves look better.

 Accurate self-ranking can be difficult to achieve. People will
often rank themselves generously (particularly when they are
at the unconscious incompetence level) or harshly
(particularly when they are at the conscious incompetence
level).

 Requires a description of what each skill is so that we know
what we are ranking ourselves on.

Book clubs. A group of
people decide to read, and
then discuss, a book at the
same pace. A common
strategy is to read a chapter
or two a week and then get
together to discuss what
we’ve learned from the
material.

 Great way to identify new potential practices or strategies to
experiment with.

 Motivates people to think through how to apply new ideas
in practice.

 Helps to build a self-learning mindset.

 Requires time to do the reading.

308

Options (Not Ordered) Trade-Offs
Coach “office hours.”
Coaches makes themselves
available at specific times so
that people can drop in on
them to get help with
something they have
expertise in.

 Makes it clear when a coach is available to help.

 Enables coaches to expand their reach as it makes their
availability predictable.

 Works well for virtual or multiteam coaching.

 Demand for coaching will still vary, with coaches being
swamped with requests at times.

 Many people aren’t aware what they need coaching in, so are
unlikely to reach out for advice in those areas.

 There is a clear cost to coaching but it is hard to measure
the benefits.

 It is difficult to find experienced, knowledgeable coaches.

Communities of practice
(CoPs)/guilds. A
CoP/guild is a collection of
people who share a craft or
profession who have
banded together to
“learn” from each other.
CoPs form and operate on a
volunteer basis, although
the CoP lead may be a
budgeted position in some
organizations.

 Inexpensive way to foster social and collaborative learning.

 Shares practices across teams as they emerge, increasing the
rate of organizational improvement.

 Provides people an opportunity to share their expertise, and
to be recognized for that expertise.

 CoP involvement takes time away from a person’s full-time
job.

 Mechanisms are required to capture and share knowledge
(one aim of the Continuous Improvement process blade
[AmblerLines2017]).

 There is a clear cost to CoPs, but it can be hard to measure
the benefits.

Embedded coach. A
coach is embedded on the
team, often on a full-time
basis, to help the team learn
and improve their way of
working (WoW).

 The coach has opportunities to observe people working
together, enabling the coach to identify what people need
coaching in.

 Helps to keep the team on track in building their agile
mindset and applying new techniques.

 There is a clear cost to coaching but it is hard to measure
the benefits.

 It is difficult to find experienced, knowledgeable coaches.

Hackathons. A hackathon is
an event, the aim of which is
to create a functioning
solution by the end of the
event. Hackathons often
develop a solution for a
local charity or internal
solution focused on
supporting our employees.
Also known as a hack day,
hackfest, or codefest.

 Fun way to get something built that we might not have
invested in otherwise.

 You can share skills and learnings across work teams.

 Opportunity for people to build relationships with others.

 Opportunity for teams to identify potential future team
members that they will potentially work well with.

 Needs to be organized and facilitated.

309

Options (Not Ordered) Trade-Offs
Mentoring. A more
experienced or
knowledgeable person helps
to guide a less experienced
or less knowledgeable
person in a certain area of
expertise.

 Effective strategy for identifying and growing leaders within
the organization.

 Opportunity for the mentor to reflect on their own practice,
leading to improvement.

 Great way to improve our personal network.

 Mentors often provide critical insights from outside of our
current environment.

 It can be difficult to identify mentors (good candidate
mentors tend to be in demand).

 Mentoring takes time away from experienced people in our
organization.

Nonsolo work. Two or
more people work together
to achieve a task. Examples
of nonsolo work strategies
include pair programming,
mob programming, and
modeling with others.

 Share skills and knowledge between people, enabling people
to expand their skill sets.

 When performed opportunistically, it often proves to be the
most effective way to accomplish the work.

 Can be a less expensive way to learn new skills, particularly
compared with classroom or even virtual training, as it can
be focused on practical issues on a just-in-time (JIT) basis.

 Improves the quality of the work because it is effectively
being reviewed in progress.

 Increases the acceptance of the solution because multiple
people were involved.

 Progress can be slower because more effort is put into doing
the work.

 Often perceived by management to be inefficient or
wasteful.

Open spaces. An open
space is a facilitated meeting
or multiday conference
where participants focus on
a specific task or purpose
(such as sharing experiences
about applying agile
strategies within an
organization). Open spaces
are participant driven, with
the agenda being created at
the time by the people
attending the event. Also
known as open space
technology (OST) or an
“unconference” [W].

 Shares learnings and experiences across teams.

 This is a structured meeting requiring a skilled facilitator,
preparation time, and post-event wrap-up.

 Some people are uncomfortable with the lack of an initial
agenda.

 Obtains information from a wide range of people, many of
whom would never have taken the opportunity to speak up
otherwise.

310

Options (Not Ordered) Trade-Offs
Training (face to face).
One or more instructors
lead a group of people
through learning a specific
topic. Also known as
classroom training.

 Enables the instructor(s) to observe and guide students in
real time.

 Many topics, particularly mindset, are best taught face to
face in a hands-on manner via group work (including
games).

 A relatively expensive approach that doesn’t scale well.

 The training needs to be scheduled and advertised in
advance.

 It can be difficult for people to find sufficient time to attend
a training class.

 Due to the training being at a specific time, students must
adjust their schedule to fit it in.

 People may need to travel to attend the training workshop.

Training (virtual). Training
is delivered digitally to
people. Sometimes this is
instructor led, often to a
group of geographically
distributed people, although
this can also be
preprogrammed training
where an individual works
through it on the computer
on their own. Also known as
computer-based training
(CBT).

 Scales to very large groups of people, to geographically
distributed people, and to temporally distributed people.

 Lower cost per person when a large number of people needs
to be trained.

 Effective for technical skills and updates to existing
knowledge.

 Individuals can take prerecorded training on their own
schedule.

 Virtual training often fails to provide full value because
attendees are not truly present. Instead of giving full attention
to the course, they’re engaged in other work, chats, or
responding to email.

 Quality of the interaction between the student and the
instructor, if any, isn’t as robust as face to face.

Provide Feedback

From a technical perspective, we like to say that we want to shorten the feedback cycle as
much as we possibly can. When providing feedback to people it’s a bit more complex than
this. We want to provide appropriate feedback when it will be well received by the person in
a manner that is effective for them. In other words, it depends. Because it requires skill and
experience to provide feedback appropriately, people will very likely need training and
coaching in doing so, something our People Management efforts [AmblerLines2017] should
support. As you can see in the following table, there are several options for providing
feedback.

311

Options (Not Ordered) Trade-Offs

360-degree review. This is a
strategy where feedback
about someone is gathered
from multiple people,
including their colleagues,
subordinates, managers, and
even external sources, such as
customers or suppliers. Also
known as 360-degreee
feedback, a multisource
assessment, or multisource
feedback [W].

 Identifies development opportunities for an individual.

 Potential for honest feedback from a variety of people.

 Can bring people together because it is a shared
experience.

 Although the feedback should be anonymous, you can
often guess where some feedback comes from.

 When the feedback is filtered too much, it can be
inadequate.

 Expensive approach due to the number of people
involved and the need for facilitation by people
management professionals.

 Potential for people to conspire for or against someone by
agreeing to provide similar feedback.

Annual review. The job
performance of an employee
is documented and evaluated.
Also known as a performance
review, a performance
appraisal, or a career
development discussion.

 Provides feedback in a structured manner.

 Feedback isn’t timely, decreasing its ability to motivate.

 This requires dedicated time to perform, and is often run
at an already busy time of year.

 Tends to lead to angst within people because their annual
bonus is often tied to the review results.

 Tends to focus on the individual rather than the team,
leading to competition among team members rather than
cooperation.

Continuous/regular
feedback. A person is given
feedback often.

 Feedback is typically timely and targeted, making it easier
to act on.

 It requires skill, including knowing how to and when to
deliver the feedback, so you may need training or coaching
in this.

 Works well with on-the-spot rewards.

 Easily forgotten at annual review time (if you’re still doing
that).

 It is easy to forget to provide feedback to someone, or
choose to forget because we’re uncomfortable doing so.

Manager review. A manager,
typically the person that the
person being reviewed
reports to or the person who
is tasked with observing and
reviewing them, appraises and
documents their
performance.

 Feedback is provided by someone outside of the team and
as a result may not be as “political” as feedback provided
from someone within the team.

 A functional manager may not be actively involved with
the person they’re reviewing, leading to ineffective
feedback.

 Feedback will likely be irregular.

 Typically used for annual reviews.

 This may be little more than “busy work” used to justify
the retention of the functional manager.

 The manager may need training and coaching in how to
effectively review people.

 Tends to focus on the individual rather than the team,
leading to competition among team members rather than
cooperation.

312

Options (Not Ordered) Trade-Offs
Self-assessment. Staff
members appraise
themselves, often following
guidance from the people
management group.

 Increases accountability and autonomy because it forces
people to think about how they perform.

 Accurate self-assessment can be difficult to achieve.
People will often assess themselves generously
(particularly when they are at the unconscious
incompetence level) or harshly (particularly when they are
at the conscious incompetence level).

 Requires a description of what the job expectations are so
that we know what we are assessing ourselves against.

 It is difficult to reflect on issues that you have little
awareness of.

Team lead review. The team
lead appraises, and often
provides feedback to, the
members on their team.

 The team lead is more likely than a manager to provide
effective feedback because they work closely with them on
a daily basis.

 Uncomfortable for the team lead to do this as they are also
a member of the team.

 Can result in undermining the team lead’s ability to be a
trusted team member because they in effect hold a
position of power over the rest of the team.

 There is a potential for politics and playing favorites
within the team.

 Team leads often don’t have these skills so will need
training and coaching.

 Puts the team lead into a position of authority over the
other team members, potentially undermining their ability
to collaborate effectively with them.

Sustain Team

Organizationally we want to support our teams as best we can, and certainly our teams want
to be supported and sustained. As you can see in the following table, we have several options
for potentially sustaining our team.

Options (Not Ordered) Trade-Offs

Coaching. A coach is
responsible for sharing their
skills and knowledge with
others in a timely and
respectful manner.

 Helps individuals or teams to improve their way of
working (WoW).

 Helps to keep the team on track in building their agile
mindset and applying new techniques.

 Coaching a team in a new approach often takes longer
than you’d hope.

 There is a clear cost to coaching, but it is hard to
measure the benefits.

 It is difficult to find experienced, knowledgeable
coaches.

313

Options (Not Ordered) Trade-Offs
Mentoring. A more
experienced or knowledgeable
person helps to guide a less
experienced or less
knowledgeable person in a
certain area of expertise.

 Effective strategy for identifying and growing leaders
within our organization.

 Opportunity for the mentor to reflect on their own
practice, leading to improvement.

 Great way to improve our personal network.

 Mentors often provide critical insights from outside of
our current environment.

 It can be difficult to identify mentors (good candidate
mentors tend to be in demand).

 Mentoring takes time away from experienced people in
our organization.

Psychological safety. In
psychologically safe teams,
team members feel accepted
and respected. They are safe to
share their opinions, to ask
questions, to ask for help, and
take other interpersonal risks.
They are able to show who they
truly are without fear of
negative consequences [W].

 Increases the possibilities for greater innovation within
the team through greater diversity of opinions.

 Increases the job satisfaction of people.

 Improves the ability of the team to learn from one
another.

 Decreases the chance that people will hold back ideas
or information.

 People may require training and coaching to become
more open toward others.

Recognition and
appreciation. People are
acknowledged and praised for
their contributions to the team.

 It’s very easy to recognize someone’s contribution.

 Helps team members to gel with the rest of the team.

 Helps to communicate team values to everyone.

 The behaviors that are publicly recognized and praised
will motivate people to continue acting in that way.

 When you don’t recognize someone for their good
work, even if it’s unintentional, it may be interpreted by
that person that you don’t appreciate their efforts.

Sustainable pace. The team
works at a pace that it can
comfortably sustain while still
meeting their goals. The team
may have to occasionally put in
some “extraordinary effort,”
but this should be an unusual
event [W].

 Protects the team, leading to better morale.

 Avoids burning people out, thereby reducing the
chance that they will quit.

 Often perceived as pushback against a fixed delivery
date.

 Exposes organizational problems such as unrealistic
expectations or quality problems.

Whole team. A team that is
cross-functional, having a
sufficient number of people on
the team with the skills and
capacity to do the work the
team has taken on.

 Reduces dependencies on people outside of the team.

 Offers opportunities to streamline our WoW, because
we have the requisite skills within the team, thereby
increasing team effectiveness.

 Doesn’t fit well with a functional silo organization
structure, complicating existing people management
strategies.

315

23 COORDINATE ACTIVITIES

The Coordinate Activities process goal, overviewed in Figure 23.1, provides options for
coordinating both within a team and with other teams within our organization. There are
several reasons why this goal is important:
1. Support effective collaboration. It is rare

to be completely autonomous because we
often need to collaborate with others,
hence the need to coordinate with one
another. This will help to reduce and
hopefully eliminate several sources of
waste, particularly wait time and rework.

2. Support autonomy. In Drive: The
Surprising Truth About What Motivates Us
(2011), Daniel Pink argues that autonomy,
mastery, and purpose are what motivates
people. One aim of this process goal is to
suggest ways of working that enable both
people and teams to work as
autonomously as possible, yet still
collaborate effectively with others as
needed. Note that the Develop Common Vision process goal (Chapter 13) promotes the
idea of teams with purpose, and the Grow Team Members process goal (Chapter 22)
provides opportunities for gaining mastery.

3. Working agreement within the team. A team’s working agreement describes how it
will work together as well as with others. An important aspect of our team’s working
agreement is how we intend to coordinate our activities internally within our team.

4. Working agreement with other teams. Similarly, indicating how others may interact
with our team is also an important part of our team’s working agreement. Having effective
coordination strategies in place enables our team to collaborate effectively with others.

Key Points in This Chapter

 Teams have several options for how
they will coordinate internally within
the team.

 A team will often need to coordinate
their work with other solution
delivery teams, within a program (a
team of teams), across the
organization, and even between
physical locations.

 Within a large organization, our
team may discover that it needs to
coordinate its release schedule with
other teams working in parallel.

316

Figure 23.1: The goal diagram for Coordinate Activities.

This ongoing process goal describes how we will coordinate our activities both within our
team and with other teams within our organization. To be effective, we need to consider
several important questions:

 How will we share information within the team?

 Who is allowed to update the artifacts created by the team?

 How will we coordinate within the team?

317

 How can we facilitate working sessions, potentially with large or diverse groups?

 If we’re part of a larger team, how will we coordinate within it?

 How will we work with enterprise teams such as enterprise architects, procurement,
and finance?

 How will we coordinate our release/deployment with the rest of the organization?

 How will we collaborate with geographically distributed team members?

Share Information

How we share information within the team is key to our success. The more flexible and open
we are with sharing information, the easier it will be to coordinate our efforts. As you can see
in the following table, there are several options for doing so.

Options (Ordered) Trade-Offs

Nonsolo work (pairing,
mobbing). People work together
via practices such as pairing, mob
programming [W], and modeling
with others. Information is shared
continuously as people work
together.

 Enables knowledge, skill, and information sharing
between team members.

 Potential defects/issues found and hopefully
addressed at the point of injection, leading to higher
quality and a lower cost of defect removal.

 Development can be a bit slower and more
expensive than people working alone (although this
is often more than made up for by the lower cost of
addressing defects).

Informal reviews. Work is
reviewed and feedback is provided,
often in a simple and
straightforward manner.
Information is shared via the
artifacts reviewed and the
conversations during the review.

 Great technique for sharing skills, promoting
common values within the team, and for finding
potential defects.

 May be sufficient for some regulatory compliance
situations.

 Longer feedback cycle than automated code analysis
or nonsolo strategies.

Formal reviews. Work is reviewed
in a structured manner, often
following defined procedures.
Information is shared via the
artifacts reviewed and the
conversations during the review.

 Supports some regulatory compliance requirements.

 Long feedback cycle, particularly when compared
with nonsolo work.

 Can require significant planning and documentation
overhead.

 Can be expensive when many people are involved
with the review.

 If someone has value to add in a review, they would
also have the same value to add via nonsolo work.

Individual (solo) work. People
work by themselves to complete a
task, although they may reach out
for assistance as appropriate.

 People share information with one another as a
matter of course while they interact with one
another.

 Potential for people to get out of sync with one
another without other coordination strategies being
applied.

 Less skill and knowledge sharing within the team.

318

Artifact Ownership

Our team’s rules regarding who is allowed to access, and who is allowed to update, certain
artifacts has an effect on how our team will work together. The more flexible our approach
to ownership, the less effort we will need to put into coordinating the usage and evolution of
our artifacts. For example, if you are the only person who is allowed to update our team’s data
model then everyone else on the team would need to coordinate their updates with you. As
you can see in the following table, there are two fundamental strategies to artifact ownership.

Options (Ordered) Trade-Offs

Collective ownership. Everyone
on the team may access and update
any team artifact. This practice is
taken from Extreme Programming
[W].

 Knowledge is quickly spread throughout the team.

 Lowers the risks associated with losing skills with
people leave the team.

 Requires people to have the discipline to work with
others to update an artifact if their own skills are not
sufficient.

 Requires adequate CM control (see the Accelerate
Value Delivery process goal in Chapter 19).

Disparate ownership. Access, and
update rights, to certain team
artifacts are restricted. For
example, only the database
administrator (DBA) may update
the data model, you are
responsible for working with
certain parts of the code, and a
coworker is responsible for other
parts of the code.

 Supports security/access control policies within our
organization.

 Promotes a separation of concerns (SoC) within the
team, something that is required by some
regulations.

 Promotes specialized skills within team members,
increasing their sense of mastery.

 Introduces bottlenecks by reducing the number of
people able to access a given artifact.

 Increases the risk of losing critical knowledge/skills
when someone leaves the team.

Coordinate Within Team

Within a team, coordination between individuals occurs in a continuous manner as a
byproduct of us working together collaboratively. There are three aspects, or perhaps
timeframes, to consider regarding coordination within a team:

1. Look-ahead. Is the team thinking about the future to identify potential problems
before they occur so that we may address them and thereby avoid unnecessary waste?
This may be something as simple as having roadmaps to work toward, a plan for the
current iteration (if you’re following an agile life cycle), leading metrics on our
automated dashboard, and visualizing our work to identify potential bottlenecks.

2. Just in time (JIT). Team members will naturally coordinate through conversations
and nonsolo work.

3. Looking back. This sort of coordination occurs via status meeting, status reporting,
and trailing metrics.

To ensure that we’re coordinating effectively across the entire team, we may need to adopt
one or more explicit practices for doing so. As you can see in the following table, there are
several strategies available.

319

Options (Not Ordered) Trade-Offs

Coordination meetings/scrum
meetings. The team gets together
to quickly coordinate what we’re
doing for the day. These meetings
typically take 10–15 minutes. The
primary aim is to coordinate,
although in many ways this is
detailed planning. Also called a
daily standup, a scrum, or a huddle
[ScrumGuide].

 Keeps the team on track so that there are no
surprises.

 Enables the team to eliminate the waste of waiting
by identifying potential dependencies between the
work of team members that day, thereby allowing
us to organize accordingly.

 Can be run on a regular cadence, for example daily,
or on as-needed, just-in-time (JIT) basis.

 Enables the team to manage change quickly, but this
in turn encourages change as well.

 People new to self-organization, or more accurately,
new to being a true team member, see this as a waste
of time.

 Works well for extroverts. Introverts often need
coaching and even a bit of prodding by the team
lead.

 Coordination meetings quickly become overhead
when performed poorly. Our goal is to coordinate
the work, not to do the work during the meeting.

 Potential to become an opportunity to
micromanage if the team doesn’t actively self-
organize.

Just-in-time (JIT) modeling.
Requirements or design details are
explored as needed, often in an
impromptu and simple manner.
For JIT requirements, a team
member asks the product owner or
one or more stakeholders to
explain what they need, and
everyone gathers around a
whiteboard or similar tool to share
their ideas. Also known as model
storming, JIT analysis, or JIT
design [AgileModeling].

 Enables us to focus on what needs to be built, and
on the most current needs.

 Stakeholder needs are elicited at the last most
responsible moment.

 Modeling enables people to think through the “big
issues” that they face.

 Requires easy access to stakeholders or their proxies
(such as product owners or business analysts).

Just-in-time (JIT) planning. Similar
to iteration/sprint planning, except
it is performed as needed and
typically for smaller batches of
work.

 The team identifies the work to be done and often
who will be doing it.

 Increased acceptance by the team because it’s their
plan.

 A work item will need to be sufficiently explored,
typically via Agile Modeling strategies, before the
work to fulfill it may be planned.

320

Options (Not Ordered) Trade-Offs
Look-ahead modeling/planning.
The team considers work items
that they will soon be working on,
exploring them in sufficient detail
so they understand what the work
entails. This is sometimes called
backlog grooming or backlog
refinement [AgileModeling].

 Potential to avoid waste from waiting or poor
information sharing because the work item
becomes “ready” to be worked on.

 Potential to inject waste when you model/plan for
work that gets dropped or evolved before you get
to it.

Regular conversations. Team
members speak with each other
whenever they need to.

 People coordinate as needed, with whomever is
needed.

 Conversations are a very effective way to
communicate.

 Flexible strategy with little overhead.

 Requires easy access to other team members,
working very well for colocated or near-located
teams.

 Coordination typically occurs between subsets of
team members, making it difficult to get a strategy
for the entire team.

Status meetings. The team gathers
to share their status, typically
discussing what they have recently
accomplished.

 Often ineffective without significant discipline,
particularly for the purpose of coordination.

 Often perceived as a waste of time. The goal of such
meetings is often to provide information for a status
report, which often proves to be of questionable
value.

 Lowers morale within the team.

Visualize work. The team
visualizes their workflow, and the
work they are doing, via a task
board or Kanban board
(sometimes called a scrum board).
This can be physical using sticky
notes on a whiteboard or wall, or
digital using an agile management
tool such as Jira, Jile, or Leankit.
These boards are one type of
information radiator [Anderson].

 Improves team’s ability to coordinate their efforts
and to identify potential bottlenecks.

 Makes the current workload transparent to
stakeholders.

 Enables prioritization discussions and scheduling
discussions within the team.

 Makes it clear who has capacity (and who doesn’t).

 Requires the team to keep the board up to date.

Facilitate a Working Session

It is quite common to need to gather either a large or diverse group of people to model or
plan together in a face-to-face manner. These working sessions will likely need to be long
(many hours or even days), and due to the complexity involved require one or more people
to facilitate them. Without effective facilitation, the working session risks devolving into an
unorganized mess. The following table describes several strategies for organizing facilitated
working sessions.

321

Options (Ordered) Trade-Offs

Agile modeling session.
Agile modeling sessions can
be applied to explore
stakeholder needs,
architecture strategies, and
even design strategies. Key
stakeholders and the team
gather in a large modeling
room that has lots of
whiteboard space to work
through issue(s) being
explored. Several modeling
rooms may be required for
“breakouts” when large
groups of people are
involved [AgileModeling].

 Scales to hundreds of people with appropriate facilitation,
but works best for groups up to a few dozen.

 Organizations new to agile often need to build one or
more agile workspaces, and may have organizational
challenges doing so.

 Modeling enables people to think through the “big issues”
that they face.

 It is easy to measure the cost, but difficult to measure the
value of doing this.

 Often need to fly key people in and make them available
for several days.

 Requires facilitation and organization/planning
beforehand to run a successful session.

Open space. An open space
is a facilitated meeting or
multiday conference where
participants focus on a
specific task or purpose
(such as sharing experiences
about applying agile
strategies within an
organization). Open spaces
are participant driven, with
the agenda being created at
the time by the people
attending the event. Also
known as open space
technology (OST) or an
“unconference” [W].

 Shares learnings and experiences across teams.

 This is a structured meeting requiring a skilled facilitator,
preparation time, and post-event wrap-up.

 Some people are uncomfortable with the lack of an initial
agenda.

 Obtains information from a wide range of people, many
of whom would never have taken the opportunity to speak
up otherwise.

 It is easy to measure the cost, but difficult to measure the
value of doing this.

 Often need to fly key people in and make them available
for several days.

 Requires facilitation and organization/planning
beforehand to run a successful session.

Big room planning.
Stakeholder needs are
explored face to face via
Agile Modeling or other
collaborative strategies. Key
stakeholders and the team
gather in a large modeling
room that has lots of
whiteboard space to work
through the stakeholder
needs. Several modeling
rooms may be required for
“breakouts” when large
groups of people are
involved [SAFe].

 Scales to hundreds of people with appropriate facilitation,
although it works best for groups up to a few dozen.

 Organizations new to agile often need to build one or
more agile workspaces, and may have organizational
challenges doing so.

 Planning enables people to think through the “big issues”
that they face.

 It is easy to measure the cost, but difficult to measure the
value of doing this.

 Often need to fly key people in and make them available
for several days.

 Requires facilitation and organization/planning
beforehand to run a successful session.

322

Options (Ordered) Trade-Offs
Joint application design
(JAD) sessions. Formal
modeling sessions, led by a
skilled facilitator, with
defined rules for how
people will interact with one
another. Can be applied to
explore requirements as well
(in this case, it may be
referred to as a joint
application requirements
[JAR] session instead) [W].

 Scales to dozens of people.

 Many people may get their opinions known during the
session, enabling a wide range of people to be heard.

 Works well in regulatory environments.

 Works well in contentious situations where extra effort is
required to keep the conversation civil or to avoid
someone dominating the conversation.

 “Architecture by consensus” often results in a mediocre
technical vision.

 “Requirements by consensus” often results in a mediocre
product vision.

 Formal modeling sessions risk devolving into being
specification-focused efforts, instead of communication-
focused efforts.

Coordinate Across Program

A program, sometimes called a programme, is a large team that has been organized into a
team of teams. Large teams are typically formed to address large, or more accurately complex,
problems. As a team grows in size, a common strategy is to split it up into a collection of
smaller subteams/squads to reduce the coordination overhead required. Ideally, each of the
subteams are mostly whole, with sufficient people with the required skills to accomplish
whatever mission/purpose they have signed up for. Although there are many heuristics for
when a team needs to be split, such as Miller’s Law (teams should be 7 +/- 2 in size) or the
two-pizza rule (if you can’t feed the team with two pizzas, it’s too large), the fact is there are
no hard and fast rules. We’ve seen teams successfully grow to over 25 people with no need to
reorganize them into several smaller teams, and we’ve heard stories of even larger single teams.
Having said that, it is common to organize large efforts into a team of teams and when you
do, you need to coordinate across the teams somehow. The following table describes several
strategies for doing so. Note: This decision point is only applicable to a team of teams.

Options (Not Ordered) Trade-Offs

Architecture owner team. The
architecture owners from each of
the subteams work together to
guide the development of the
architecture for the overall
program, as you can see in Figure
23.2. The architecture owner team
self-organizes and holds working
sessions as needed to evolve the
architecture for the program. Large
programs may have a chief
architecture owner to lead the
architecture owner team.

 Shares knowledge and vision among architects.

 Explicit strategy to evolve the architecture
consistently as the subteams learn.

 There is a greater need for this early in life cycle,
but the team will always be needed due to the need
to evolve the architecture.

 Effective way for senior architecture owners to
share their skills and knowledge with junior
architecture owners.

 Opportunity to share experiences and coach one
another. In some ways, this is an architecture
owner community of practice (CoP)/guild for the
program.

 The greater the number of teams, the more
important this becomes.

323

Options (Not Ordered) Trade-Offs
Common cadences. The
subteams/squads have
iterations/sprints that are the same
length. For example, in Figure 23.3,
we see that subteams B, C, and D
have a common cadence of two
weeks where they can choose to
coordinate their next batch of work
given that their previous batch is
“done.” Note that we can still
integrate our work at any point in
time, we do not have to restrict
ourselves to the end of an iteration.

 Easy to coordinate system integration across
teams.

 Effective at coordinating medium-sized batches of
work across teams.

 Subteams are forced to have the same iteration
length, and iterations in general, whether it makes
sense for them or not.

 Difficult when people are assigned to multiple
subteams because critical ceremonies/working
sessions overlap.

 Supports an agile release train (ART) easily (see
Deploy the Solution in Chapter 21 and Release
Management [AmblerLines2017]).

Coordination meetings/scrum
meetings. The team gets together
to quickly coordinate what we’re
doing for the day. These meetings
typically take 10–15 minutes. The
primary aim is to coordinate,
although in many ways this is
detailed planning. Also called a daily
standup, a scrum, or a huddle
[ScrumGuide].

 See Coordinate Within Team above.

Divisor cadences. The subteams/
squads have iterations/sprints with
lengths that are divisors of a larger
coordination cadence. For example,
in Figure 23.3, subteams A, B, and
F have iteration lengths of 1, 2, and
4 weeks, respectively, which are
divisors of four weeks. Subteams A,
B, and E have iterations of length 1,
2, and 3, respectively, and therefore
are divisors of six weeks. The
“divisor number” is important
because that is the earliest point
that the teams can coordinate their
next batch of work given that their
previous batch is now “done.”
Note that we can still integrate our
work at any point, not just at
“divisor points.”

 Provides explicit points in time to coordinate large
batches of work.

 Provides flexibility to teams to vary their iteration
length (or to not have iterations at all).

 Increases the cadence for integrating “done”
releases, which in turn increases the cycle time to
delivery.

 Supports an agile release train (ART) (see Deploy
the Solution in Chapter 21 and Release
Management [AmblerLines2017]), although with
less flexibility than common cadences.

324

Options (Not Ordered) Trade-Offs
Facilitated working session.
Working sessions to explore
stakeholder needs, to work through
architecture or design strategies, or
to plan the next increment of work
are often needed on agile teams.
When many people are involved, or
when there is a potentially
contentious issue to work through,
these sessions should be facilitated
by an outsider (preferably someone
with facilitation skills). See the
Facilitate a Working Session
decision point above for options.

 Increases the chance that the session will produce
value.

 Requires preparation and follow-up work.

 It can be difficult to find experienced facilitators.

 The cost is easily measured, but the benefits are
difficult to measure, making it difficult to justify.

Management team. The program
has a team of managers overseeing
and guiding the agile/lean
subteams.

 Ensures coordination happens, but this is better
done by a product coordination team or a program
manager/coordinator.

 Almost always an overhead given that there are
team leads on the subteams.

 Danger of managers injecting busywork into the
teams when it becomes clear that there is very little
management work required.

Open spaces. An open space is a
facilitated meeting or multiday
conference where participants
focus on a specific task or purpose
(such as sharing experiences about
applying agile strategies within an
organization). Open spaces are
participant driven, with the agenda
being created at the time by the
people attending the event. Also
known as open space technology
(OST) or an “unconference” [W].

 See Facilitate a Working Session above.

Product coordination team. The
team leads from each subteam work
together to drive team coordination
efforts, as you can see in Figure
23.2. They will self-organize and
meet when appropriate to
coordinate among themselves. A
daily scrum of scrums (SoS) is a
common approach.

 Decreases the chance that interteam issues get out
of hand.

 Provides an opportunity to address people
management issues within the program.

 Supporting mechanism for program
manager/coordinator.

 The greater the number of teams, the more
important this becomes.

 Opportunity to share experiences between team
leads and to coach one another. In some ways, this
is a team lead CoP/guild for the program.

 Tends to appear when a scrum of scrums (SoS)
falls apart as a program grows in size.

325

Options (Not Ordered) Trade-Offs
Product owner team. The product
owners from each subteam work
together to manage requirement
and work dependencies across
subteams, as you can see in Figure
23.2. They will self-organize and
run working sessions, potentially
several a week, to coordinate their
efforts. Large programs may have a
chief product owner to lead the
product owner team. Similar to
LeSS, which has a product owner
for the overall program and
business analysts on each subteam.

 Ensures that requirements (or work) are managed
effectively across subteams.

 Provides an opportunity to reduce risks associated
with requirements dependencies.

 One more responsibility of product owners, who
are already very busy.

 The greater the number of teams, the more
important this becomes.

 Opportunity to share experiences between team
leads and to coach one another. In some ways, this
is a product owner CoP/guild for the program.

Program manager/coordinator.
A large program will often have
someone in a
management/coordination role to
oversee and guide the entire
program. They will typically
coordinate the efforts of the
architecture owner, product owner,
and product coordination teams;
manage relationships with vendors
(often working with Procurement
[AmblerLines2017]); and monitor
the overall budget and schedule.

 Oversees explicit governance of the program, in
particular reporting to leadership.

 The larger the program, the greater the need for
this role.

 Provides explicit finance governance for the
program. This is important given that the cost of a
program can be substantial.

 Provides explicit vendor management, particularly
of service providers, for the program. This is
important given the likelihood of using contractors
and consultants, and even outsourcing, on large
programs.

Scrum of scrums (SoS). Someone
from the coordination meeting of a
subteam (a scrum) attends the
coordination meeting across all
teams within the program (the
scrum of scrums).

 Straightforward solution for up to 5–6 teams.

 Tends to fall apart given the increased need for
architecture/technical coordination and
requirements/work coordination as a program
grows in size.

Visualize work. The team
visualizes their workflow, and the
work they are doing, via a task
board or Kanban board (sometimes
called a scrum board). This can be
physical using sticky notes on a
whiteboard or wall, or digital using
an agile tool such as Jira, Leankit, or
Jile. These boards are one type of
information radiator [Anderson].

 See Coordinate Within Team above.

326

Figure 23.2: Coordinating across a program.

327

Figure 23.3: Coordinating iteration cadences.

Coordinate Across the Organization

Our team is only one of many teams within our overall organization. When we adopt existing
organizational guidance and leverage existing organizational assets (in short, when we work in
an enterprise-aware manner), we operate more effectively. Please see the Align with Enterprise
Direction (Chapter 8) and Leverage and Enhance Existing Infrastructure (Chapter 26) process
goals. Working in an enterprise-aware manner requires us to collaborate with these other
teams and to coordinate our efforts across the enterprise. As you can see in the following
table, there are several strategies for doing so.

Options (Not Ordered) Trade-Offs

Enterprise professional as team
member. The member of the
enterprise team becomes a
member of the delivery team. For
example, in Figure 23.4, you see
that some enterprise architects are
also playing the role of architecture
owner on delivery teams.

 Great way to share skills and spread knowledge.

 Increases the chance that the teams will learn about
and follow the organizational vision.

 When the work requires enterprise expertise or
guidance, the person is right there.

 Requires many people in enterprise roles.

 Teams can quickly become bloated with extra
enterprise people.

 Doesn’t work for all enterprise areas. For example, it
is unlikely that a team will require a finance person
on a regular basis.

328

Options (Not Ordered) Trade-Offs
Enterprise roadmaps (detailed).
The organization’s vision, often for
technical direction or business
direction, is captured in detail.
These detailed roadmaps typically
comprise key diagrams
overviewing the vision, detailed
descriptions of those diagrams,
guiding principles and the thinking
behind them, and detailed
implementation plans.

 Provides an overview of the vision supported by
detailed information.

 The more detailed the information, the less likely it
is to be read or understood.

 Roadmaps need to be developed and maintained.
The more information it contains, the more
expensive this becomes.

 Roadmaps need to be easily accessible by team
members.

 Roadmaps need to be something people believe in,
otherwise they will not be followed.

 Supports some regulatory compliance strategies.

Enterprise roadmaps (light).
Enterprise roadmaps, often
describing our organization’s
technical vision or business vision,
are captured in a concise manner.
These roadmaps typically comprise
key diagrams overviewing the
vision, principles meant to guide
the organization, and high-level
plans and priorities.

 Provides an overview of the vision.

 There is a chance that the roadmap(s) will not be
read, understood, or even followed.

 Roadmaps need to be developed and maintained.

 Details are not captured, so we need another strategy
for teams to get any required info.

 Roadmaps need to be easily accessible by team
members.

 Roadmaps need to be something people believe in,
otherwise they will not be followed.

 May still be regulatory compliant.

Enterprise service teams. The
enterprise team provides services,
often defined through a team
working agreement, to other
teams. For example, in Figure 23.5
the data management team accepts
requests from external teams, self-
organizing to fulfill the requests
appropriately.

 Teams can get the help they need, assuming the
enterprise team has sufficient capacity.

 Works well when the enterprise team is minimally
staffed.

 Typically doesn’t support skill sharing with the teams
being served.

 Potential for low-priority requests to get dropped
due to insufficient capacity.

Facilitated working session.
Enterprise teams will run modeling
and planning sessions occasionally,
and sometimes will involve their
stakeholders (including members
from delivery teams) when doing
so. When these sessions become
large or diverse, they will likely
need to be facilitated.

 See Coordinate Across Program above.

329

Figure 23.4: Enterprise architects as team members.

Figure 23.5: Data management as an enterprise service team.

330

Coordinate Release Schedule

In organizations with multiple solution delivery teams working in parallel, even if it’s just a
handful of teams let alone hundreds, we will want to coordinate the release schedules of those
teams. We do this to reduce the chance of a collision between teams. This decision point
presents team-level strategies, as you can see in the following table, whereas the Release
Management process blade [AmblerLines2017] addresses organization-level concerns.

Options (Ordered) Trade-Offs

Continuous deployment
(CD)/release stream. The
solution is automatically
deployed through all internal
testing environments and into
production without human
intervention [W].

 A low-risk, inexpensive way to deploy into production.

 Requires a continuous integration (CI)/continuous
deployment (CD) pipeline, and by implication
sophisticated automated regression testing.

 Enables the team to receive continuous feedback from
end users.

 Enables us to potentially remove our internal demo
environment (we can just use production for that).

 This is a fundamental practice that enables the team to
adopt either the Continuous Delivery: Agile life cycle or
the Continuous Delivery: Lean life cycle.

Regular releases/release train.
The solution is released on a
regular schedule (e.g.,
quarterly, bimonthly,
monthly, biweekly) into
production [SAFe].

 Release schedule becomes predictable, thereby setting
stakeholder expectations and making it easier for
external teams to coordinate with our team.

 Important step toward a continuous delivery (CD)
approach, particularly when the releases are very regular
(such as monthly or better).

 The cycle time from idea to delivery into production may
not be sufficient, particularly with longer release cycles
(such as quarterly releases).

Release windows. Release
windows, sometimes called
release slots, are defined dates
and times when teams are
allowed to release into
production. Similarly, dates
and times when teams are not
allowed to release are
sometimes called release
blackout periods.

 Sets expectations and enables coordination between
potentially disparate teams.

 Enables teams to identify slower, low-risk periods for
deployment. But, in a 24/7 world there may no longer
be slow-/low-usage periods.

 Often insufficient for very large numbers of teams
without automation.

 Scheduling into release windows needs to be
coordinated across teams.

Unique project releases. The
solution is released into
production a single release at
a time, with following releases
(if any) planned out as
separate efforts. Often driven
by promises to customers,
regulatory needs, or a project
mindset.

 This is a very risky way to release because the team will
have no experience releasing this solution into
production.

 Changes identified by end users can be very expensive
(on average) to implement, and with a project approach
there may not even be budget to do so after the release.

 Deployment often includes expensive and slow manual
processes.

 Appropriate for solutions that are truly one-release
propositions, but they are few in practice.

331

None. There is no
coordination of releases
across delivery teams.

 Works well for a small number of teams, or when there
are few dependencies between systems.

 Chance of collisions and subsequent finger-pointing.

 Often results in many emergency production fixes.

Coordinate Between Locations

When our team is geographically distributed, we will need to coordinate between locations.
We consider a team that is spread across floors within the same building or across different
buildings to be geographically distributed, let alone if they are in different cities. There is a
very good argument that a team with people working in separate cubicles or offices is also
geographically distributed. As you can see in the following table, we have several options for
coordinating between locations.

Options (Ordered) Trade-Offs

Move team to a single location.
Everyone on the team is moved
to a common location, ideally a
team workroom or at least a
common team work area. See
Evolve WoW (Chapter 24) for
strategies to organize physical
environments.

 Increased opportunities for effective communication
and collaboration.

 Fixes the actual problem of people being
geographically distributed.

 Can create a serious morale problem if people are
counting on being able to work from other locations,
such as home.

 May be difficult to move away from virtual
communication preferences at first, in particular chat
and email. Some people may need coaching.

Gather physically at critical
times. People come together at a
single location, typically to have a
working session to work through
an important issue such as
deciding on a strategy for
upcoming work.

 Make critical decisions quickly with a wider range of
collaboration.

 Builds relationships between people who are working
in disparate locations, enabling them to interact more
effectively in the future.

 Requires planning, facilitation, and follow-up.

 Some people may not be able to travel.

 It is easy to measure the costs but difficult to measure
the benefits, making it hard to justify.

 If you’re not willing to fund this, and guarantee
continued funding over time, the team shouldn’t be
geographically distributed.

 The team will need to leverage collaborative tools
when not together.

Ambassadors. An ambassador is
someone who travels between
locations, working at the location
for a period of time before
returning to their “home
location.” In Figure 23.6, there is
one person who is an
ambassador, perhaps they spend
alternating weeks at each
location.

 Keeps communication between sites going.

 Helps to build relationships between people at
disparate sites.

 It is hard on the ambassadors and their families.

 It is easy to measure the costs but difficult to measure
the benefits, making it hard to justify.

 Less costly than flying everyone around.

 The team will need to leverage collaborative tools
when not together.

332

Options (Ordered) Trade-Offs
Boundary spanners. Boundary
spanners are responsible for
coordinating communication
between sites. They look for
opportunities to help people at
different sites to communicate
with one another when needed,
working with the boundary
spanner at the other site to do so.
In Figure 23.6, team members at
each location work with their
boundary spanner to organize
collaboration with people at other
sites.

 Improves the chance that people communicate with
others at disparate locations.

 Once relationships between people are built, the
need for this lessens, but likely doesn’t disappear.

 Works well with ambassadors (the ambassadors are
often boundary spanners as well).

 Leverages collaborative tools to facilitate the
collaboration.

Adopt collaborative tools. Teams
can adopt collaborative tools
(such as chat software,
videoconferencing, or discussion
group software) to interact with
one another. In Figure 23.6, you
can see that people from each site
are interacting as needed with
people at other sites.

 Very common strategy that improves
communication between sites (compared with
sharing documents).

 Tends to be a crutch for people when they are near-
located. People will use chat or email instead of
getting up and walking over to have a conversation.

 Often enables persistence of information, although it
can have too much signal noise compared to
purposeful documentation such as roadmaps.

 Collaborative tools are not as good as face-to-face
communication.

333

Figure 23.6: Strategies for coordinating between locations.

335

24 EVOLVE WAY OF WORKING (WOW)

The Evolve Way of Working (WoW) process goal, overviewed in Figure 24.1, provides
options for identifying and evolving how we will work together as a team. This goal is the
combination of two former process goals,
Form Work Environment and Improve Team
Process and Environment, and it is highly
related to the Continuous Improvement
process blade [AmblerLines2017]. The focus
of this goal is on the WoW for a team, the focus
of Continuous Improvement is to support and
enable teams to choose their WoW and to
share learnings across the organization. There
are several reasons why this goal is important:

1. Every team is unique and faces a
unique situation. We showed in
Chapter 2 that because people are
unique, teams are therefore also
unique. Every team faces a unique
configuration of complexity factors
including team size, geographic distribution, technical complexity, regulatory
compliance, and other issues. The implication is that a team needs to tailor their WoW
to address the situation that it faces.

2. We are constantly learning. As individuals we learn every day—maybe we learn a
new skill, something about the problem we face, something about how our colleagues
work, something about our technical or organizational environment, or something
else. These learnings will often motivate us to evolve the way that we work.

3. The other teams we collaborate with are evolving. Very few agile teams are
“whole” in practice. They must collaborate with others to achieve their mission.
Because these other teams are evolving their WoW over time the implication is that
the way that they interact with us will evolve too, something that we may be able to
learn from.

4. Our environment is constantly evolving. Our external environment is constantly
changing, with our competitors evolving their offerings, the various levels of
government introducing new legislation (including regulations that we need to
comply with), new and evolving technical offerings in the marketplace, and world
events in general. Our internal environment also evolves, with people joining and
leaving our organization, our organizational structure evolving, and our IT ecosystem
evolving as other teams release their solutions into production. Needless to say, we
may need to evolve our WoW to reflect these changes.

5. The team needs somewhere to work. With the exception of a few teams where
everyone is dispersed and working from home, we will need to provide space for
some or all of our team members.

6. The team needs sufficient tooling. The team needs access to physical and digital
tools so we can do our work.

7. These strategies are applicable to a wide range of teams, not just solution
delivery teams. We’ve applied these strategies with leadership teams, marketing
teams, finance teams, enterprise architecture teams, data management teams, and

Key Points in This Chapter

 Teams should choose their WoW
and then evolve it as their situation
evolves and as they learn.

 The DA tool kit enables teams to
take a guided continuous
improvement (GCI) approach,
increasing their rate of process
improvement.

 Although a team faces a unique
situation, they can still apply known
strategies and practices. They do not
need to invent a new process from
scratch.

336

many others. Having said that, the focus of this book is on how solution delivery
teams can choose their WoW. Although this process goal applies to all of those teams,
the rest of the goals within the book may not. Each of these domains (marketing,
leadership, etc.) requires domain-specific advice.

Figure 24.2 provides an overview of how teams typically evolve their WoW over time.
When our team is initially formed we need to invest in putting together our initial WoW. This
includes identifying the situational context that we face (see Chapter 2), choosing the life cycle
that seems to be a best fit for our situation (see Chapter 6), selecting an initial set of tools to
work with, and setting up our physical work environment(s). Because initiating an
endeavor/project tends to be very different than executing on the development of a solution,
we’ve found that at the beginning of Inception a team tends to identify the existing process
in which we are expected to operate and then tailor our own WoW for Inception. Then,
toward the end of Inception when the vision for what we need to accomplish has solidified,
our team will likely want to initially tailor our WoW to reflect how we believe we will do that
work. Having said this, at any point in time, including during Inception, our team may choose
to evolve our WoW based on new learnings (more on this later). Figure 24.1 depicts the
process goal diagram for Evolve Way of Working (WoW), and as you can see, we have many
options available to us.

This ongoing process goal describes how we will improve how we work together and how
we'll share potential improvements with others. To be effective, we need to consider several
important questions:

 How will we organize our physical workspace?

 How will we communicate within the team?

 How will we collaborate within the team?

 What life cycle will we follow?

 How do we explore an existing process?

 What processes/practices will we initially adopt?

 How will we identify potential improvements?

 How can we reuse existing practices/strategies?

 How will we implement potential improvements within the team?

 How will we capture our WoW?

 How will we share effective practices with others within our organization?

 What digital/software tools will we adopt?

337

Figure 24.1: The goal diagram for Evolve Way of Working (WoW).

338

Figure 24.2: Choosing and evolving your WoW over time.

Physical Environment

How we structure our physical work environment is an important contributor to choosing an
effective WoW. We will want areas where the team (or subsets thereof) can gather to
collaborate and share information and we will want to provide areas where individuals can
have some privacy. As an aside, Scott jokingly calls this “terraforming,” a concept from science
fiction that refers to the strategy of making a planet habitable for humans to thrive there. The
following table compares common strategies for organizing our physical work environment.

Options (Ordered) Trade-Offs

Dedicated workroom. A
room where the team
works together in a
colocated manner, often
with lots of sketching
space (such as
whiteboards).
Sometimes called a war
room or a tiger team
room.

 Maximizes close collaboration between team members.

 Everyone can see the big visible charts and task board
(information radiators) posted in the room.

 Shelters from noise distractions outside the team (and reduces
disruptions of others by the team).

 Can become loud when multiple conversations are going on
simultaneously.

 The conversations of other team members often prove to be
valuable information, not just “noise.”

 Some consider it claustrophobic.

 There is often a lack of whiteboard space (an interior decorating
decision). We’ve seen companies install whiteboards on tracks
in front of windows, enabling the team to choose when they
want sunlight and when they want board space.

 There is a potential for hygiene issues.

 There is seldom an opportunity for personalization of
individuals’ workspaces although great opportunity to do so for
the team.

 Some team members may not be comfortable with the lack of
privacy, and will likely need to have access to other spaces for
private phone calls or work.

 Teams may be less likely to collaborate effectively with other
teams.

339

Options (Ordered) Trade-Offs
Caves and commons.
The commons is a
dedicated workroom or
open work area (as
above). The caves
provide privacy for team
members when required
[C2Wiki].

 Has all the benefits of a dedicated workroom, plus the ability for
people to find privacy when needed within the “caves.”

 Can often be difficult to obtain this much space, particularly in
organizations new to agile delivery.

Agile
Modeling/planning
room. A room where
there is a lot of sketching
space so that people may
talk and sketch
[AgileModeling].

 Useful for agile modeling sessions, big room planning sessions,
and training.

 Can be difficult to convince traditional organizations to make
the relatively minor investment in properly organizing such a
room. Even when the investment is on the order of US$5,000 –
6,000 per person (including furniture), that still proves to be a
small amount given the productivity improvement among well-
paid people.

Near-located cubicles.
Most, and often all, team
members have their own
cubicles on the same
floor.

 Team members can personalize their space. More privacy for
team members. Team members can still attend the daily
coordination meeting.

 It is harder to collaborate due to the distance between people.

 Team members may forget or neglect to update the physical task
board if it is not nearby.

 Reduced effectiveness of the physical task board.

 It’s easier for team members to be distracted by requests of
people outside of the team. Critical team members, in particular
the product owner and architecture owner, should have “office
hours” when they ensure they will be in their cubicle.

 The success rates of agile teams that are near-located are lower,
on average, than teams that are colocated, even though the
distribution of the team is minimal.9

Near-located offices.
Some, or even all, team
members have their own
physical offices on the
same floor.

 The ability to close the door increases privacy.

 Team members tend to use low-collaboration styles of
communication such as email.

 It’s easier for team members to be distracted by requests of
people outside of the team. Critical team members, in particular
the product owner and architecture owner, should have “office
hours” when they ensure they will be in their office.

 Consider adopting group chat software so that team members
can see when team members are at their desks and be ready for
instant answers.

9 Scott maintains a page sharing the results of all his research at Ambysoft.com/surveys/.

340

Options (Ordered) Trade-Offs
Far-located members.
Some, or even all, team
members are located
farther away than an
easy walk from each
other. This includes
teams where we’re
spread across several
floors in the same
building, or in separate
buildings.

 Possibility for follow-the-sun development around the clock.

 Time zone differences can make collaboration very difficult (see
the Form Team process goal for discussions around the effects
of time zone differences).

 Reduces effectiveness of the daily meeting, perhaps even
preventing it from happening.

Open work area. A large
room or space where
multiple teams, or many
individuals, work.

 More space than a workroom, potentially supporting a very large
team.

 Better cross-team collaboration and sharing of information
compared to office or cubicles.

 Can be very loud and distracting because multiple teams, or
simply individuals who aren’t part of teams, are working in the
same space. Note that sound management technologies can help
with this issue.

 When people surrounding us are not part of our team, their
conversations are in effect “noise” that we need to ignore.
Conversely, the conversations of nearby team members often
prove to be important information.

 Numerous studies have found that open work areas reduce
productivity, increase stress, and reduce morale.

 Some team members may not be comfortable with the lack of
privacy, and will likely need to have access to other spaces for
private phone calls or work.

Choose Communication Styles

Media richness theory (MRT), overviewed in Figure 24.3, informs us about the effectiveness
of common communication techniques [W]. We should select the most effective
communication style for the situation that we find ourselves in. If someone is nearby, get up
and go have a face-to-face conversation with them. If they’re far away, consider traveling to
have a face-to-face conversation, otherwise have a videoconference (e.g., using Skype or
Hangouts) or a voice call with them if possible. It is particularly important to consider this
decision point early in Inception because there are many Inception activities around planning
and modeling that require effective communication within the team and with stakeholders.

341

Figure 24.3: Comparing communication strategies.

Options (Ordered) Trade-Offs

Face to face around a
shared sketching
environment. Two or
more people gather
around a sketching
surface such as a
whiteboard or paper.

 Most effective communication option.

 Requires people to be in the same location, or at least to travel
to the same location.

 Doesn’t directly support information persistence, although
sketches can be easily captured digitally.

Face-to-face
conversation. Two or
more people talk face
to face.

 Requires people to be in the same location, or at least to travel
to the same location.

 Doesn’t directly support information persistence.

Videoconferencing.
People talk and see one
another, and possibly
share their screens,
digitally via software
such as Skype or
Zoom.

 Very common option when people are geographically
distributed.

 Enables people to see the body language of the people they are
interacting with.

 Supports persistence of the conversation, although manual
transcription can be onerous (luckily some tools now support
automated transcription).

Phone conversations.
People have voice
conversations digitally
via phones or voice-
over internet protocol
(VOIP)
software/devices.

 Common and easy way to have a conversation when people are
geographically distributed.

 Supports persistence of the conversation, although manual
transcription can be onerous (luckily some tools now support
automated transcription).

342

Options (Ordered) Trade-Offs
Group chat (online).
Two or more people
text chat with one
another via chat
software such as Slack,
Stride, or Messenger.

 Supports persistence of the conversation.

 Supports asynchronous communication.

 Often provides an excuse for near-located people to not get up
and walk over to talk with someone else.

Lightweight
documentation.
Information is captured
as a concise overview
or a high-level
documentation or
diagram. Wikis are
often used for this.

 Effective approach to persisting information.

 Target audience may not trust, read, or understand the
documentation. Remember the CRUFT formula (see the
Produce a Potentially Consumable Solution process goal in
Chapter 17) to calculate the effectiveness of the
documentation.

 The documentation needs to be maintained over time,
otherwise it gets stale and eventually abandoned.

Email. People share
information and have
discussions via email.

 Supports persistence of the conversation.

 Supports asynchronous communication.

 Often provides an excuse for near-located people to not get up
and walk over to talk with someone else.

Detailed
documentation.
Information is captured
in detailed artifacts,
including documents,
models, plans, wiki
pages, or other formats.

 Least effective means of communication available to us.

 In the case of requirement or design specifications, we are often
better advised to capture the expected behavior as executable
tests and the overview information in concise documentation.

 Target audience is very unlikely to trust the documentation and
may not even read it.

 Unwarranted trust around detailed documentation often leads
decision makers to make risky decisions.

 The documentation needs to be maintained over time, often an
expensive proposition given the level of detail, otherwise it gets
stale and eventually abandoned.

343

Choose Collaboration Styles

The way that we collaborate within our team is key to our success. Where traditional teams
tend toward individuals producing artifacts for others, Disciplined Agile teams tend toward
the more collaborative end of the spectrum due to the improved opportunities to learn and
produce quality outcomes together. The following table compares key collaboration styles that
we should consider on our team. Note that a more robust set of strategies for coordinating
our work within a team, and for coordinating with other teams, is described in the ongoing
process goal Coordinate Activities (Chapter 23).

Options (Ordered) Trade-Offs

Opportunistic nonsolo
work. Team members
follow nonsolo practices
such as pairing [W], mob
programming [W], and
modeling with others
when appropriate.

 People receive the benefits of nonsolo work strategies when it
makes the most sense.

 Effective way to share skills and knowledge.

 Needs to be easy for people to decide to work together in an
impromptu manner.

Regular pairing. Team
members regularly work
in pairs and often follow
a “promiscuous pairing”
approach where they
swap pairs on a regular
basis.

 Pairing is good at sharing skills and knowledge between two
people.

 Promiscuous pairing is very good at quickly spreading
knowledge throughout the team.

 Long-term pairing, perhaps for several weeks at a time, works
well to teach someone a complicated new skill.

 Some people don’t like pairing.

 Sometimes it makes sense for people to work alone.

 Eases “onboarding,” the act of bringing a new person onto the
team.

Meetings/working
sessions. The team holds
planning, modeling, and
strategy sessions as
needed.

 Effective when critical, high-level ideas or strategies need to be
worked through, particularly when the team is in a room with a
lot of whiteboard space.

 Can be difficult to schedule when people aren’t near-located.

Individual work. Team
members focus on doing
“their work” by
themselves. Also called
solo work.

 Works well when people on the team are fairly specialized and
perform focused work as they can apply their expertise and get
it done quickly.

 Works well for people who like to work on their own.

 Results in significant handoffs between people and the
corresponding bureaucracy (such as reviews and traceability
matrices) required to make this work.

 Very poor at sharing skills between people.

 Very poor at sharing knowledge across the team.

 Results in significantly slower and more expensive development
on average.

 Quality tends to decrease with the more handoffs there are.

344

Select Life Cycle

An important decision that our team needs to make is regarding which life cycle we intend to
follow. As an agile/lean team, we should always strive to learn and improve, and some of the
improvements that we make will motivate changes in the life cycle that we’re following. Figure
24.4 compares four of the six DAD life cycles and overviews improvement paths between
them. The Exploratory life cycle is not shown because it tends to be something you do for a
short period of time to explore a new idea, then once that idea has been explored you go back
to working via one of the life cycles shown in the diagram. The Program life cycle is similarly
not shown because it focuses on coordination of a team of teams, each of which is following
its own life cycle. Chapter 6 describes the life cycles in detail.

Figure 24.4: Evolving between life cycles.

Figure 24.5 shows common paths that we’ve seen existing traditional teams take at various
organizations around the world. The timings that we’ve indicated reflect what we’ve seen
when teams have received effective coaching from coaches experienced in guided continuous
improvement (GCI)—without this your teams are likely to take longer. We’ve also seen new
teams start at the second life cycle in each of these paths, for example starting with the Agile
life cycle or the Lean life cycle instead of a traditional life cycle. The arrows indicate the typical
times it takes a team to move from one life cycle to another. These times do not include the
length of time that a team was following the previous life cycle. For example, a team could be
following their tailoring of the Agile life cycle for a year, spend a month transitioning to the
Lean life cycle, which they then follow for nine months, then invest a month evolving into
the Continuous Delivery: Lean life cycle.

345

Figure 24.5: Common improvement paths for existing teams following a traditional
life cycle.

The following table compares several life cycle options that we should consider, six of which
are the DAD life cycles (see Chapter 6). We have included non-DAD life cycles to help put
them into context.

Options (Ordered) Trade-Offs

Continuous Delivery:
Lean. A Kanban-based life
cycle where the team
releases functionality into
production, often several
times a day, or even more
frequently. Long-running,
disciplined teams tend to
evolve their approach into
this life cycle.

 Very quick feedback cycle, enabling teams to respond to
changing stakeholder needs and priorities.

 Works well for teams facing constantly changing
requirements or new requests for assistance.

 Requires significant skill and discipline.

 Requires automated testing, integration, and deployment.

 Supports very quick time-to-market deployment.

 Supports, or more accurately reflects, a #NoProjects strategy.

346

Options (Ordered) Trade-Offs
Continuous Delivery:
Agile. A Scrum-based life
cycle with very short
iterations/sprints where
functionality is released
regularly into production at
the end of each iteration
(often weekly). Long-
running agile teams tend to
evolve into this life cycle.

 Quick feedback cycle, enabling teams to respond to changing
stakeholder needs.

 Requires significant skill and discipline.

 Requires automated testing, integration, and deployment.

 Works well when the work items remain stable for the length
of the (short) iteration.

 Supports quick time-to-market deployment.

 Supports, or more accurately reflects, a #NoProjects strategy.

 Appropriate for situations where an application is already in
production and new features are delivered every iteration.

Lean. A Kanban-based
project life cycle that
explicitly supports the full-
delivery life cycle from
beginning to end.

 Functionality is released into production when it’s ready to
go.

 Work can be prioritized via a variety of criteria.

 Small batches of work lead to quick flow.

 Works well for disciplined teams with quickly evolving
requirements/priorities.

 Often the only viable option for teams who are very resistant
to change or who work in environments with low
psychological safety.

 Lean strategies can be applied to teams following a traditional
approach that would like to evolve their WoW via small
changes over time.

 Requires greater skill and discipline compared to the Agile life
cycle.

Agile. A Scrum-based
project life cycle that
explicitly supports the full-
delivery life cycle from
beginning to end.

 Straightforward life cycle based on Scrum that is easy to learn
due to it prescribing the timing of key practices.

 Very good starting point for teams new to agile, but can be
disruptive for existing teams (so consider Lean life cycle
instead).

 Iterations (sprints) motivate teams to build functionality in
multiweek batches.

 Releases into production are typically a few months apart,
leading to longer feedback cycles based on actual usage.

 Tends to fall apart when requirements change often (so adopt
the Lean life cycle instead).

Program. A life cycle that
describes how to
coordinate a team of teams
working on a single
solution.

 Provides guardrails for organizing a team of teams, scaling to
dozens of subteams/squads.

 Each subteam/squad will have its own WoW, albeit with a
consistent way to coordinate between teams (see Coordinate
Activities in Chapter 23).

 Explicitly addresses coordination of people, requirements,
and technical issues.

 Does not require the subteams to be on the same cadence
(e.g., to have the same iteration length), or even to be
following the same life cycle.

347

Options (Ordered) Trade-Offs
LeSS life cycle. Large Scale
Scrum, better known as
LeSS, is a method for large
programs organized as a
team of scrum teams
working on a single solution.
The life cycle focuses on the
coordination of a team of
teams [LeSS].

 Well-defined and supported strategy for teams of teams,
particularly at the six-to-eight subteam range.

 Tends to be prescriptive, requiring significant organizational
change to adopt.

 When it comes to scaling, LeSS focuses on solving the
medium-sized team issues but seems to avoid the difficult
challenges around geographic distribution, regulatory
compliance, and organizational distribution.

Nexus life cycle. Nexus is a
method for large programs
organized as a team of
Scrum teams. The life cycle
applies Scrum to coordinate
a team of scrum teams
[Nexus].

 Familiar with teams already doing Scrum.

 Little more than the application of Scrum at the program
level.

 Far less sophisticated than LeSS, although much simpler than
SAFe.

SAFe. A life cycle for large,
multiteam/squad agile
programs working on a
single product. Although
the DA tool kit does not
explicitly support this life
cycle, it is possible to tailor
DA to appear like SAFe.
The life cycle focuses on
how to coordinate a team
of teams into an “agile
release train” [SAFe].

 Many process decisions are prescribed. This can make this life
cycle easier to adopt in the short term but less flexible in the
long term.

 Oriented toward large programs of 50–250 people, organized
into a team of teams.

 Requires skilled, experienced agilists because it is geared for
large teams, which are inherently more complex than small
teams.

 Where a Scrum-based approach is a small-batch system of
biweekly deliveries, SAFe is a large-batch system, typically
resulting in deliveries approximately every three months
(although they do say to develop at a common cadence but
release on demand). From a lean perspective, this is both a
source of large planning and coordination waste, and results
in infrequent delivery of value.

Exploratory. An
experimentation-oriented
life cycle based on Lean
Startup to determine the
true market value of an
idea. The proven and
market-tested result is
known as a minimal viable
product (MVP) [Ries].

 Quick and inexpensive way to run business experiments.

 Low-risk approach to validating potential new business
strategies or potentially significant product features.

 Requires a way to target a subset of our (potential) user base.

 Appropriate for the exploration of a new product or service
offering for the marketplace where there is a high risk of
misunderstanding the needs of potential end users.

 Often not applicable in regulatory compliance situations.

 Often perceived as a strategy for startup companies only, yet
can be applied within established enterprises easily enough.

348

Options (Ordered) Trade-Offs
Scrum life cycle. A partial life
cycle focused on
Construction where software
is developed incrementally in
short timeboxes called
sprints. This life cycle is not
explicitly supported by
DAD, although it is a part of
the two Agile life cycles
[ScrumGuide].

 The life cycle is focused on Construction, leaving the rest of
the delivery life cycle up to you.

 Our recommendation is that if you want to do Scrum, you
should adopt DAD’s Agile life cycle instead and avoid all the
work required to figure out the rest of the life cycle.

Traditional/waterfall life
cycle. Software is built in a
serial manner through a
series of functional phases
(i.e., requirements,
architecture, design,
programming, testing,
deployment). This life cycle is
not explicitly supported by
DAD, although the DA
mindset (see Chapter 2)
explicitly addresses the fact
that many organizations will
have traditional teams
working in parallel with more
modern agile/lean teams via
its 15th principle.

 Comfortable approach for experienced IT professionals who
have not yet transitioned to an agile or lean way of working.

 Appropriate for low-risk projects where the requirements are
stable and the problem has a well-known solution. For
example, upgrading the workstations of a large number of
users or migrating an existing system to a new platform.

 Time-to-market deployment tends to be slow.

 Lean strategies can be applied to traditional teams, including
Guided Lean Change as described in Chapter 1.

 Tends to be very high risk in practice due to long feedback
cycles and the delivery of a solution only at the end of the life
cycle.

 Associated risks are often overlooked by management due to
a façade of predictability and control provided
by the paperwork produced.

Visualize Existing Process

An existing team should understand its current WoW so that it can identify potential waste
and inefficiencies. The following table compares common strategies for exploring and
communicating an existing process.

349

Options (Ordered) Trade-Offs

Value stream map.
Depicts processes, the
time spent performing
them, the time taken
between them, and the
level of quality resulting
from processes. Used to
explore the effectiveness
of existing processes and
to propose new ways of
working
[MartinOsterling].

 The value stream map (VSM) begins and ends with the
customer, providing insight into the customer experience.

 Describes an existing process in a graphical manner, capturing
critical information around timing and quality.

 Enables the team to understand their complete process so that
they can explore potential improvements to the overall flow (see
the DA principle Optimize Flow in Chapter 2).

 Captures the process for a specific scenario; several VSMs may
be required to explore the overall process.

 Analysis of the timing information can be used to pinpoint areas
in a process where significant waste occurs and to estimate
potential lead and cycle times for your process.

 Enables teams to have honest, and sometimes uncomfortable,
discussions about how effective an existing process actually is.

 Particularly useful when there is disagreement within the team
as to where their process-related problems are, or when they
aren’t aware that there are problems.

 Suitable when the focus of the team is on improving the process
flow.

 Requires someone with sufficient modeling experience to
facilitate the creation of the VSM.

Kanban board. All
work items are visually
shown in one of the
columns on a task board.
A Kanban board may be
either manual (e.g.,
stickies on a whiteboard)
or digital [Anderson].

 Enables the team to visualize their process and the current work
in process.

 Provides transparency to the team and its stakeholders regarding
the work currently in progress, who is doing that work, and the
current status of that work.

 Physical boards require wall space, which can be hard to come
by in some organizations.

 Digital boards often need to be integrated with other digital
tools, such as defect management or status reporting tools,
adding complexity to our tool strategy.

 The glue of inexpensive stickies is often weak, or over time the
glue weakens, requiring other strategies such as magnets to keep
the stickies from falling off the board.

Business process model.
Used to depict the
activities and the logical
flow between them
within a process. Could
be done in freeform
format or with a
notation such as
Business Process
Modeling Notation
(BPMN) [W].

 Useful to understand current and future-state business
processes.

 Can be useful for understanding handoffs, responsibilities,
delays, and other valuable information about the process being
explored.

 If the diagrams become too formal, their creation and
maintenance can become expensive and time-consuming.

 Some modeling notations, particularly BPMN, can be overly
complex and difficult for business stakeholders to work with.

350

Tailor Initial Process

From the very beginning of the agile movement, agile teams were told to own their own
process, an important part of what we call choosing your WoW in Disciplined Agile. Choosing
our WoW means that as a team we decide how we’re going to work together to achieve the
outcomes we’ve agreed to. An important part of this is to tailor DAD to reflect the situation
that we face, something that is particularly crucial when our team is new. The following table
compares several common options for how we can initially tailor DAD (note that we’ll evolve
our approach later as we learn).

Options (Ordered) Trade-Offs

Process-tailoring
workshop. A facilitated
session where the team
works through the DAD
goal diagrams to identify
how they intend to work
together.

 Great way to find out how well people actually understand
the individual strategies that the team intends to adopt.

 The team comes to a working agreement about how we
believe we will work together, making roles and
responsibilities much clearer and potentially avoiding
misunderstandings later in the life cycle.

 Can be seen as “process overhead” by developers who just
want to get on with things.

 Sessions can be several hours long, so it’s better to organize
the workshop into two: one early in Inception for Inception
work and one later during Inception for Construction and
Transition.

Adopt organizational
suggestions. Some
organizations choose to
define preconfigured
versions of DAD for
common scenarios faced
by their teams.

 Great starting point for tailoring our team process because
the common work has been addressed.

 We will still need to do a bit of tailoring because every team
is unique.

 Effective way for organizations to share common strategies
across teams, particularly around governance.

 Danger that an organization will overly constrain teams by
inflicting the “one repeatable standard approach.”

 Potential that teams will skip tuning their process because
the “standard” option is close enough.

Adopt DAD
suggestions. The DAD
goal diagrams have
highlighted suggestions
that are geared for teams
new to agile that are small,
colocated, or near-located,
and taking on a
straightforward problem.
It’s effectively a
combination of strategies
from Scrum, Extreme
Programming (XP), Agile
Modeling, and a bit of
Unified Process (UP).

 Very similar to having an organizational
suggestion/standard, without sharing common
organization-specific strategies.

 If our team isn’t small, or at least near-located and taking on
a straightforward problem, then at least some of the
suggestions will not be appropriate for the team.

 Even when the team is in this “simple” situation, the
suggestions may still not be completely right for the team
(although most of them will be).

351

Options (Ordered) Trade-Offs
Agile/lean method.
Adopt an existing
method, such as Scrum or
SAFe, out of the box
(OOTB).

 Very comfortable for people who have invested a few days
to become “certified masters” or “certified professionals” in
that method.

 One size does not fit all; we’ll have a lot of tailoring to do
with very little advice from that method beyond “our team
can figure it out as it goes.”

 Risk that we choose an inappropriate method, or have one
chosen for us.

 Very expensive and slow approach under the guise of a
simple and quick process solution.

Identify Potential Improvements

On an ongoing basis our team should strive to reflect on our experiences, to learn from them,
and to identify potential ways to improve our WoW. The theory of constraints (ToC) [W]
suggests that we should look for things constraining our WoW and then do what we can to
reduce or remove them. There are potential people-oriented constraints such as a lack of skills
or misaligned mental model, process-oriented constraints such as ineffective organizational
policies or bureaucratic procedures, and tooling-oriented constraints such as insufficient
automation or an inadequate workspace. As you can see in the following table, we have several
options for identifying potential improvements.

Options (Ordered) Trade-Offs

Value stream mapping. This is a
lean-management method for
analyzing the current state and
designing a future state for a
process. It is done with the
customer of that process being the
start and end point of the map
[MartinOsterling].

 Reveals potential waste in an existing process and
the levels of quality delivered by that process. This
can be very disconcerting for people who believe
in the existing approach.

 Requires a bit of skill to facilitate the creation of
value stream maps (VSMs).

 The mathematical calculations required to
determine levels of efficiency and quality delivered
are straightforward and can be (and often need to
be) easily supported using a spreadsheet.

 The focus often becomes streamlining an existing
process, which definitely has its place. But we still
need to question whether the process, or portions
thereof, is the “right” approach.

Measure existing WoW. The
team’s current WoW is measured so
as to better understand it. Potential
metrics to consider include lead
time, cycle time, throughput, work
in process (WIP), incidents,
colleague engagement, and the net
promoter score (NPS) [W].

 Better data enables teams to make better decisions.

 Requires the team to invest time to put the
measurements in place.

 Requires the team to understand how to use the
measures to inform their improvement efforts.

 See Govern Delivery Team (Chapter 27) for a
discussion of options for metrics gathering and
reporting.

352

Retrospectives. A reflection
technique where a team looks back
at how they have worked to identify
potential opportunities for
improvement. Retrospectives are
often performed on a regular basis
throughout the life cycle [Kerth].

 Effective strategy for getting a group of people to
reflect on the way that they work.

 Retrospectives enable us to identify potential
improvements, but if we don’t act on them then
we’re wasting our time.

 By holding retrospectives throughout the life
cycle, particularly on a just-in-time (JIT) basis
when we experience a problem, we reduce the
feedback cycle between experiencing a problem
and (hopefully) resolving it.

Process modeling. A process model
depicts a process, either the current
or future state of it, in terms of
workflows and activities. There are
many notations to choose from,
including Business Process
Modeling Notation (BPMN), UML
Activity Diagrams, data flow
diagrams, flowcharts, and more.

 Typically easier to understand than a VSM (see
above), but also less effective as they typically
don’t focus on efficiency or quality.

 Some notations, particularly BPMN and UML,
prove to be overly complex for nonmodelers,
although it is possible to get value from only using
a subset of the notation.

Structured survey. The team sends
out a survey asking people to
indicate the strengths and
weaknesses of our current WoW to
gain insight into potential
improvement opportunities.

 Surveys are a good way to quickly get information
from a range of people.

 Offers the opportunity for people to provide
feedback anonymously (if the survey is built that
way).

 It is a skill to develop a survey that results in
valuable findings without injecting significant bias
into the results.

 There is “survey fatigue” among most people,
making it difficult to get a good response rate.

Ad hoc process improvement. The
team considers ideas whenever
something comes to mind.

 Rarely happens, or at least ideas are rarely acted on.

 It is better to have an impromptu, just-in-time
(JIT) retrospective.

Project postmortem. A reflection
technique where, at the end of a
project, the team identifies what
went well and what didn’t go well.

 Once the project is over people are rarely
motivated to change their WoW because the team
has very likely been disbanded or is about to be.

 Writing a “lessons learned” document can be
cathartic if the team has had a bad experience.

 The “lessons learned” coming out of a
postmortem are rarely acted upon, implying they
are little more than “lessons indicated.”

 Often little more than process compliance.

Reuse Known Strategies

As this book readily shows, there are hundreds if not thousands of practices and strategies
that our team can potential adopt and tailor for our situation. In other words, we should
consider and then experiment with known strategies whenever we possibly can. The following
table shows that we have several options for doing so, and Figure 24.6 provides insight into
their effectiveness.

353

Figure 24.6: Comparing the options.

Options (Ordered) Trade-Offs

Idea from Disciplined Agile
(DA) tool kit. The team leverages
the DA tool kit, perhaps via this
book or through a supporting
tool, to identify potential
strategies to consider adopting.
We call this guided continuous
improvement (GCI).

 When we recognize that we are suffering from a
problem, or that we want to potentially improve an
aspect of our WoW, we can look it up in the DA
knowledge base to discover what options we have
available to us to experiment with.

 Improvement occurs as small changes, ideally
minimal viable changes (MVCs) [LeanChange2],
which reduce risk and enable us to focus.

 We can leverage agnostic learnings from the
thousands of teams that have come before us, even
though our team is in a unique situation. We don’t
have to start from scratch when choosing our WoW.

 As you can see in Figure 24.6, this approach tends to
have a steeper productivity curve because the team is
making better, guided decisions regarding which
strategies to consider adopting.

 We will still need to experiment with the potential
improvement to see how well it works for us in the
situation that we face, even though the trade-offs
associated with the strategies and practices captured
in DA are indicated

 When the options for a decision point are ordered,
such as with this one, we can clearly see which
potential options are likely to be more (or less)
effective than what we’re currently doing.10

10 DA is arguably a maturity model in that respect.

354

Options (Ordered) Trade-Offs
Local core practice. Our team
considers potential improvements
that we’ve heard about from other
teams, perhaps via our
Continuous Improvement efforts
at the organizational level
[AmblerLines2017] or via
common process assets (see
Leverage and Enhance Existing
Infrastructure in Chapter 26). This
is an example of a continuous
improvement strategy, as shown
in Figure 24.6.

 Improvement occurs as small changes, ideally
minimal viable changes (MVCs) [LeanChange2],
which reduce risk and enable us to focus.

 There is a greater chance that a strategy that worked
well for another team may work well for us because
they’ve at least discovered how to overcome any
organizational challenges associated with the
strategy.

 We still need to experiment with the strategy to
discover how well it works for us.

 The other team may not have been aware of better
strategies to address their situation (perhaps they’re
not aware of DA yet).

Core agile practice/“best
practice.” The team adopts
industry or organizational “best
practices” that have often been
identified/selected by our
organization. See the Leverage
and Enhance Existing
Infrastructure process goal
(Chapter 26). This is an example
of a continuous improvement
strategy, as shown in Figure 24.6.

 Improvement occurs as small changes, ideally
minimal viable changes (MVCs) [LeanChange2],
which reduce risk and enable us to focus.

 There is the potential to increase the consistency
across some aspects of the WoW for individual
teams, making it easier for teams to share learnings
and to collaborate with other teams.

 There is no such thing as a “best practice.” All
practices are contextual in nature, working well in
some situations and very poorly in others. Just
because someone else thinks a practice is “best” for
us doesn’t mean it actually is.

 We still need to experiment with the strategy to
discover how well it works for us.

 “Best practices” are often the excuse that bureaucrats
use to inflict common processes on teams to make it
easier for them, regardless of the negative impact that
those practices may have on the teams.

355

Options (Ordered) Trade-Offs
Prescriptive method/framework.
The team chooses to adopt a
defined method such as Scrum,
DSDM, or SAFe.

 Gives the team a defined WoW.

 Can result in significant dysfunction or require
significant organizational change if there is a misfit
between the context of the team and the context
addressed by the method/framework.

 Improvement occurs as a large change (Scrum) or a
very large change (DSDM, SAFe), offering the
potential to address a large number of problems at
once but also increasing the chance that the
improvements will not be adopted effectively due to
the greater complexity of the change.

 Often requires significant training and coaching.

 Although team productivity does tend to improve
over time, it often plateaus when the team hits the
limit of the advice of the method or framework, as
you can see in Figure 24.6. As Ivar Jacobson
observes, you end up in “method prison” [Prison].

 For continued improvement, this strategy needs to
be combined with one of the strategies above.

Implement Potential Improvements

It isn’t enough to simply identify potential improvements, we also need to implement them.
As you can see in the following table, we have several options for doing so.

Options (Not Ordered) Trade-Offs

(Guided) continuous
improvement. Our team will
strive to improve on a regular
basis. Improvement through a
series of small, incremental
changes is called “kaizen” [W].
This approach is considered
continuous improvement (CI)
when the team identifies potential
improvements without the aid of
a tool kit such as DA, and guided
continuous improvement (GCI)
when it does.

 Increases the chance that the team will in fact
improve their WoW.

 A continuous approach tends to be less risky than a
periodic approach because the changes identified are
often smaller and easier to implement.

 Teams improve their WoW at a steady pace.

 Requires team members to regularly reflect on how
they work together.

 Supports the development of a learning organization.

 Easier said than done; improvement activities are
easy to push off into the future in favor of more
pressing needs (such as delivering new business
functionality).

356

Options (Not Ordered) Trade-Offs
Controlled experiment. The
team explicitly tries out a
potential improvement for a
short period of time to determine
how well it can work within the
environment. The process for
doing this is shown in Figure
24.7, and it can be used with both
a guided and nonguided
continuous improvement
strategy. This is also called a
validated learning approach [W].

 A low-risk and inexpensive way to determine
whether a potential improvement actually works for
our team in the situation that we face.

 We are likely to discover what aspects of the
improvement work well, if any, for us and what
aspects don’t work well. This insight will enable us to
effectively tailor the strategy to our situation.

 Even when an experiment “fails,” the team still learns
what doesn’t work for them. This helps us to refocus
on something that might work.

 It supports (and requires) critical thinking by team
members to assess the effectiveness of a technique.

 Experiments need to be given sufficient time to run,
and this can vary.

 Some organizations don’t like the word “experiment”
because of the perception that experiments don’t
always succeed. Get over it.

 Need to measure the results of the experiment.

Measured improvement. After
adopting a new improvement, the
team measures their effectiveness
at applying it in practice.

 Solid way for a team to determine if a potential
change was actually beneficial.

 The team needs to know what is important to them,
adopting a technique such as outcomes and key
results (OKRs) or goal question metric (GQM) [W].
Jonathan Smart promotes the slogan “better value
sooner safer happier” for desired outcomes for
agile/lean teams.

 We may not have baseline data against which to
compare that are applicable to the potential
improvement. We can still start measuring now, but
it may take us longer to determine the effectiveness
of a potential improvement.

 Can be hard to tease out the effects of a single change
from the metrics; you’ll need to make a judgment call,
albeit an informed one.

 Works well with the other strategies.

 Many organizations want to compare themselves
against other, similar organizations or against the
industry in general. But it is very rare for
organizations to share their metrics with others, and
rarer still to find organizations measuring themselves
in a similar way to yours.

 Management may desire to start comparing teams
with one another, motivating the teams to either stop
measuring or to manipulate their numbers so that
they look good.

357

Options (Not Ordered) Trade-Offs
Periodic improvement. Our team
will strive to improve our WoW
periodically, perhaps once a
quarter or at the beginning of a
project.

 When many potential improvements are adopted by
a team in a large batch, it is difficult to determine the
effects of a single improvement.

 Process improvement becomes an effort because the
team rarely tries to do it, so we never build up
improvement skills within the team and as a result we
likely do it poorly.

 Riskier when changes are adopted as large batches.

Figure 24.7: Running experiments to evolve our WoW.

Capture WoW

In a recent study, Google found that having structure and clarity (around our WoW) was one
of five factors for successful teams within Google [Google]. We may decide, or be required
for regulatory compliance, to document the team’s WoW. The regular agile documentation
advice naturally applies to this: Document only if that’s our best option, be concise, only write
what we intend to maintain over time, and work closely with the audience of the
documentation so that we understand their true needs. As you can see in the following table,
we have several options for doing so.

358

Options (Not Ordered) Trade-Offs

Detailed team process. The
team’s WoW will be captured
in detail, perhaps in a wiki or
in a document, often linking
to even greater detail
elsewhere on the web or
within our organization’s
knowledge base.

 Makes it clear how the team intends to work together.

 Supports regulatory compliance regulations around
process definition.

 Like other forms of documentation, process
documentation suffers from all of the issues around
CRUFT (see the Produce a Potentially Consumable
Solution process goal in Chapter 17) and the
ineffectiveness of documentation for communicating
information.

 Often onerous in practice, particularly when the process
documentation is maintained manually.

 A process-definition tool, particularly one that natively
supports DA, can help a team to maintain their process
definition over time.

Working agreement (internal).
This is a short document
describing the principles or
rules that team members are
expected to follow when
collaborating within the team.

 Makes it clear within the team how people will work
together.

 Many working agreements call out the roles and
responsibilities of people on the team, making it clear
who is responsible for what.

 This may be a simple way to support regulatory
compliance requirements around process definition.

 The working agreement will need to evolve over time to
reflect the evolution of the team’s WoW.

Working agreement
(external). This is a short
document describing how
other teams can interact or
collaborate with our team. It
may indicate times the team is
available, how to contact the
team, or what artifacts are
needed for given services that
the team provides. Also
known as a team interface or
service-level agreement
(SLA).

 Makes it clear to people external to the team what it does
and how to interact with it.

 The working agreement will need to evolve over time as
the team evolves its WoW and as the needs of the team’s
customers evolve.

Share Improvements With Others

Our team should be willing and eager to share our learnings with others, and of course to
learn from others as well. Although this is the focus of the Continuous Improvement process
blade [AmblerLines2017], there are several important practices at the team level that we’re
likely to adopt (as you can see in the following table).

359

Options (Ordered) Trade-Offs

Open spaces. An open
space is a facilitated
meeting or multiday
conference where
participants focus on a
specific task or purpose
(such as sharing
experiences about
applying agile strategies
within an organization).
Open spaces are
participant driven, with
the agenda being created
at the time by the people
attending. Also known as
open space technology
(OST) or an
“unconference” [W].

 Shares learnings and experiences across teams.

 This is a structured meeting requiring a skilled facilitator,
preparation time, and post-event wrap-up.

 Some people are uncomfortable with the lack of an initial
agenda.

 Obtains information from a wide range of people, many of
whom would never have taken the opportunity to speak up
otherwise.

Hackathons. A hackathon
is an event, the aim of
which is to create a
functioning solution by
the end of the event.
Hackathons often
develop a solution for a
local charity or internal
solution focused on
supporting our
employees. Also known
as a hack day, hackfest, or
codefest [W].

 Fun way to get something built that we might not have
invested in otherwise.

 You can share skills and learnings across work teams.

 Opportunity for people to build relationships with others.

 Opportunity for teams to identify potential future team
members that they will potentially work well with.

 Needs to be organized and facilitated.

Lean coffee sessions.
Lean coffee is a
structured, agenda-less
meeting where people
gather, build an agenda,
and then have a
discussion.

 Easy way to share learnings with others.

 Requires someone to facilitate the session, but that’s very
easy.

 Can be evolved into a “lean beer” session after work.

 Extroverts often dominate the discussions, although a good
facilitator will draw out introverts.

Practitioner
presentation. Someone
decides to share a learning
or experience by
presenting it to others.
This presentation may be
to just the team or may be
to a wider audience.

 Easy way to share experiences and learnings with others.

 Presentations can take a lot of preparation effort.

 Presentations will often open up dialogs between people
who normally would never interact with one another.

 Presentations can often be one-way communication from
the presenter to the audience.

 Presentations can often become a bottleneck to sharing due
to the need to arrange the presentation.

 Introverts will rarely take the opportunity to present.

360

Options (Ordered) Trade-Offs
Discussion forums.
People interact within
internal (to our
organization) discussion
forums using software
such as Slack or
Discourse.

 Discussion forums will likely need to be supported by
members of a community of excellence (CoE) who are
focused on the forum topic.

 Discussion forums are a great way to support the learning
efforts of members of a community of practice (CoP)/guild
that is focused on that topic.

 Discussions tend to repeat, which is a reflection of where the
people are in their learning process.

 We will likely want to capture important points outside of
the discussions, perhaps in process documentation, a blog,
or an article.

Capture/document
improvement. We capture
our improvement in our
process documentation,
typically captured in a wiki
or word processor, and
share that with others
(perhaps via an artifact
repository such as
Microsoft SharePoint).

 Supports regulatory compliance regulations around process
definition.

 Likely difficult for other teams to find and read.

 Like other forms of documentation, process documentation
suffers from all of the issues around CRUFT (see the
Produce a Potentially Consumable Solution process goal in
Chapter 17) and the ineffectiveness of documentation for
communicating information.

 This is often seen as an overhead. Keep it concise, ask
yourself if you’re ever going to refer to this information
again.

Write blog/article. We
write a blog or article,
posting it either internally
within our organization
or, better yet, externally
on the web so that others
may read it.

 Form of documentation, albeit a focused one, potentially
suffering from all the issues around CRUFT.

 Likely easy for others to find it.

 Blogs and articles rarely describe the context of an
improvement (although that is something you could choose
to do).

 Typically not considered “proper” process documentation
by regulatory auditors.

Word of mouth. We tell
others about the
improvement that we’ve
made, either verbally or
through digital means.

 Effective way to communicate the improvement at the time.

 The improvement isn’t persisted for the long term.

Organize Tool Environment

What tools, either physical or digital, will the team use? We want to get started on tool setup
during Inception, but we should expect to evolve our strategy over time as we learn more
about what we need and what the various tools do for us (and to us). It is important to
recognize, however, that installing new tools does not make us agile. In the traditional world,
some people could get away with just learning how to use a tool to perform a task because
that was their entire job. On agile teams, we work in a flexible, collaborative, and often
sophisticated manner. Process and tools are important, but people and the way we work
together are far more important. The following table overviews common categories of tools.

361

Options (Not Ordered) Trade-Offs

Acceptance test.
Acceptance test tools
capture and run user-level
tests.

 Validates detailed requirements.

 Enables us to take a test-driven, executable-specifications
approach to requirements.

 Forces us to think through detailed requirement logic.

 Requires the person(s) capturing requirements to use a test
tool rather than a documentation tool.

 Acceptance tests can be difficult for stakeholders to read (at
least at first).

Code analysis. There are
two categories for this
type of tool: static analysis
tools that examine the
source code and dynamic
analysis tools that examine
running software [W].

 Static code analysis tools can implement clear-box-level
validation of code.

 Dynamic analysis tools can implement black-box-level
validation of code.

 Automates grunge work of code reviews, enabling teams to
focus on higher-level quality issues and education during
such reviews.

Configuration
management. Stores and
tracks changes to artifacts,
including source code,
models, pictures,
documents, data, and
many others [CM].

 Enables teams to manage their assets effectively.

 Foundation for continuous integration (CI).

 Requires team to establish a CM strategy. What assets will
be put under CM control and what is our branching
strategy? See the Accelerate Value Delivery goal in Chapter
19.

Continuous deployment
(CD). Automatically
deploys assets, such as
working builds, image
files, and data, from one
environment to another
[W].

 Enables teams to deploy more often and more consistently,
thereby reducing deployment risk.

 Reduces the cost of deployment, in some cases making it
effectively free.

 Requires investment in deployment infrastructure, often
called a “CI/CD pipeline.”

 Requires investment in training and team process
improvement, particularly around continuous integration
(CI) and automated regression testing.

Continuous integration
(CI). When something is
checked into CM control,
the CI tool automatically
rebuilds the solution by
recompiling, running
regression test suite(s),
and running code analysis
tools [W].

 Automates the grunt work involved with building our
solution.

 CI is a fundamental technical practice for agile teams.

 Requires investment in setting up tooling and the
development of automated regression tests.

 Requires investment in training and team process
improvement, particularly around adoption of agile quality
practices and automated regression testing.

362

Options (Not Ordered) Trade-Offs
Dashboard. Displays
reports and critical
information as configured
by the team, in real time.
Uses data warehousing
(DW) and business
intelligence (BI)
technologies to process
data generated by the tools
used by the team.

 Provides the team with real-time information about the
status of their work.

 Provides transparency to people outside of the team,
enabling the monitoring aspects of governance and
(hopefully) fact-based discussions.

 Automates the generation of what used to be in (often
fictional) project status reports, freeing management to
focus on value-added activities.

 Requires people using the dashboards to understand what
information the various report widgets convey.

Integrated development
environment (IDE). The
programming and testing
tools used by team
members.

 Fundamental development tool for software developers that
combines a tailorable suite of programming, testing, and
even visualization tooling.

Group chat. Enables two
or more people to send
text messages (and often
files) between each other.

 Enables discussions between team members that are
geographically or temporally distributed.

 Risk that it motivates people to not have face-to-face
conversations.

Operational monitoring.
Tools that track end-user
usage of a solution.
Sometimes called crash
analytics tools.

 Enables crash analytics, particularly important for exploring
potential issues.

 Provides real-time, operational intelligence to developers to
help them identify what functionality is being used.

 Supports the Exploratory life cycle and experimentation
practices such as canary testing and split (A/B) testing.

 Requires architectural scaffolding for event logging.

 Potential for performance degradation due to logging.

Sketching surface.
Somewhere that people
can draw, such as a
whiteboard, chalkboard,
or paper.

 An inclusive strategy that enables effective communication
between people and potentially active stakeholder
participation.

 Can be a valuable information radiator, particularly when
the sketches are agile models such as architecture diagrams,
screen design sketches, or business rules.

 We can capture the information digitally if we need to.

Task board. A physical
place where the team
manages their work,
typically a whiteboard or
wall with sticky notes on it.
Often called a scrum
board or Kanban board.
See work item
management below.

 A simple, inclusive tool that enables planning and
coordination discussions.

 Requires people to be physically present.

 A physical task that illustrates development flow is a good
place for teams to start, before introducing tools and virtual
boards.

 Sticky notes will often fall off the board (so use little
magnets).

Unit testing. Enables
team members to write
detailed tests, often using
the xUnit framework.

 Enables test-first programming strategies.

 Enables granular automated regression testing.

 Requires both “test thinking” and development skills.

363

Options (Not Ordered) Trade-Offs
Wiki. A simple, web-
based documentation tool
that supports multiuser
editing.

 Straightforward, collaborative documentation tool.

 Wiki pages can go stale over time and sometimes need to be
pruned. Similarly, the organization structure of the wiki will
need to evolve too.

Work item (backlog)
management. Software-
based task board tool.
Often called agile
management tools, a
scrum board, Kanban
board, or task board.

 Enables distributed planning and coordination.

 May be required for regulatory compliance.

 Requires more effort than a physical task board (see above).

365

25 ADDRESS RISK

Disciplined Agile Delivery (DAD) has several risk mitigation strategies built in:
1. The Address Risk process goal. Originally DAD had two risk-focused process goals,

this one and Identify Initial Risks, but due to the significant overlap between the two, we
decided to simplify the framework by
combining them into a single process goal.

2. Support for a risk-value life cycle. DAD
promotes a risk-value life cycle approach
where we recommend that risk be
considered when prioritizing work in
addition to stakeholder value—many agile
methods focus just on value to their
detriment. Figure 25.1 summarizes the risk-
value profile for a DAD team, showing
how DAD teams address a lot of risk very early in the life cycle via addressing the
Stakeholder Vision and Proven Architecture milestones (see Chapter 6). Figure 25.2
compares the risk profile/burndown of a typical DAD team with that of a typical Scrum
team (which only takes a value-driven life cycle) and a typical traditional team that pushes
a lot of risk to the very end of the life cycle.

3. Support for ordered ways of working (WoW). As you’ve seen throughout the book,
within each process goal diagram many of the decision points have ordered option/choice
lists. This makes the lower risk ways of working explicit because the more effective
options tend to be toward the top of the lists.

Figure 25.1: The risk-value profile of a DAD team.

Key Points in This Chapter

 Risks should be identified, assessed,
and addressed appropriately
throughout the life cycle.

 DAD teams have a better risk
profile compared to Scrum teams,
which in turn have a better risk
profile than traditional teams.

366

Figure 25.2: Comparing the risk burndowns of typical DAD, Scrum, and traditional
teams.

The Address Risk process goal, overviewed in Figure 25.3, provides options for how we
will approach risk within our team. Although the project management community prefers the
term “manage risk” rather than “address risk,” not surprisingly, we find that the word manage
comes with too much baggage—managing risk leaves the door open to needless bureaucracy,
whereas addressing risk motivates us to focus on dealing with the challenges that we face.
There are several reasons why the Address Risk goal is important:

1. We face many risks. Many risks are addressed within the team, but some risks we’ll
need help from outside the team to address. Disciplined teams make risks transparent,
making it easier for them to garner the help they need.

2. Understanding the level of risk is a critical decision factor for moving forward.
There are two questions we should ask at the Stakeholder Vision milestone: Does the
team understand the risks that it faces? And if so, does it have a viable strategy to
respond to them? Similarly, any go-forward decision made during Construction
should take the current level of risk faced by the team into account.

3. Reducing risk increases our chance of success. Enough said.
4. It’s usually better to deal with risks early (in other words, shift risk mitigation

left). Risks tend to grow (but not always). If a risk proves to be a problem, it’s better
to know that early, when we still have time and budget to fix it, or if the risk proves
insurmountable, it’s better to cancel or go in a different direction and thereby not
waste time and money.

367

Figure 25.3: The goal diagram for Address Risk.

To address risk effectively, we need to consider several important questions:

 How will we identify risks?

 What type of risks will we consider?

 How will we classify/prioritize the risks?

 How will we respond to risks?

 How detailed will the risk descriptions be?

 How will we manage identified risks?

 How will we monitor risks on an ongoing basis?

368

Choose Risk Strategy

Part of the “discipline” in DAD is to explicitly identify and manage risks early and
continuously throughout the release. The following table compares several strategies for doing
so. The strategies can and should be combined.

Options (Not Ordered) Trade-Offs

Collaborative discussions.
The team, and often key
stakeholders, openly discuss
potential risks and their
impacts.

 We obtain a wide range of opinions about the risks that we face.

 The discussion needs to be facilitated, otherwise we run the risk
of strong personalities dominating the discussion.

 People may not be willing to publicly discuss some risks,
particularly those that are people oriented.

Expert judgment. The team
seeks out the opinion of
someone with deep
experience in the domain
that we’re working in.

 A quick way to identify risks.

 We may not have access to such experts, or we may not
recognize that such expertise is available to us.

 Inexperienced teams may choose to ignore risks identified by
experts in the false belief that it’s different this time or because
they become overwhelmed with the nature of what they face.

Interviews. Someone from
the team, often the team lead
or product owner,
interviews stakeholders to
identify what they believe to
be risks.

 Potential to have private discussions about risks that people
may not be willing to discuss openly.

 Potential to miss risks when not discussed as a group, because
each individual may only understand a part of the overall risk,
and the overall risk doesn’t become apparent until we piece it
together.

Patterns/common lists. A
checklist of common risks,
or risk categories, faced by
IT delivery teams.

 Reusing existing risks increases the likelihood that reoccurring
risks from past endeavors are not missed.

 New types of risk may be missed because they are not included
in the list.

Risk/value life cycle. The
team actively addresses risk
early in the life cycle, and
may choose to develop risky
functionality early so as to
prove the architecture with
working code.

 Increases the team’s chance of success.

 Enables the team to address risky items when they still have the
most time and money available to do so.

 If the team discovers a risk cannot be addressed, they can pivot
or cancel the endeavor before they’ve spent too much effort on
it.

 Risky functionality tends to be more complex in nature, and can
be difficult for a newly formed team to address when they are
still learning how to work together.

Strength weakness
opportunity threat (SWOT)
analysis. A brainstorming
technique to identify
potential risks [W].

 Can take more time, but it is more rigorous in exploring
potential risks.

 Goes beyond risk identification, particularly in the identification
of opportunities, which can drive interesting scope discussions.

 Useful for assessing risks in competitive situations.

 Useful in collaborative group discussions.

Explore Risks

Understanding what we need to explore in our discussions about risks is also important. The
traditional thinking around RAID (risk, assumptions, issues, and dependencies) provides
important insight for agilists, assuming we can keep things light [W]. Furthermore, the context

369

of our situation is an important source of risk (e.g., architectural risks are born in technical
complexity and requirements risks in domain complexity). Thinking about the different types
of risks can help ensure that important risks are not missed. The following table describes
common risk types that we should consider [PMI].

Options (Not Ordered) Trade-Offs

Architectural. What
technical risks, or long-
term platform risks, do we
face? Teams facing
significant technical
complexity are likely to
face architectural risk.

 We want to ensure that we know the chosen technologies
will work together as we expect in our environment, that our
team understands how to work with the chosen
technologies, and that any reusable assets we’ve chosen to
work with are viable.

 Potential for significant cost and delay if architectural
problems are found late in the life cycle.

 Technical debt in existing legacy assets introduces
architectural risk that can be very difficult to address.

 We will want to work with our enterprise architects, if
available, to explore these risks.

 Architecture risk is often mitigated via the Prove
Architecture Early process goal in Construction (Chapter
15), architectural spikes during Inception or Construction,
and proof-of-concept (PoCs) mini projects.

Dependency. Do we have
dependencies on deliveries
from other teams or
organizations? Do they
have dependencies on us?
Teams facing significant
technical complexity,
domain complexity, or
organizational distribution
are likely to face
dependency risk.

 When there are any changes in schedule, scope of
functionality delivered, or quality of what is delivered, they
will have a potentially negative impact on the dependent
teams. This could impact schedule, cost, and even ability to
deliver for those teams.

 Dependency risk is mitigated by DAD teams via scheduling
in the Plan the Release process goal (Chapter 11) and
through continuous monitoring of those dependencies and
adjusting the plan accordingly throughout Construction via
the Produce a Potentially Consumable Solution process goal
(Chapter 17).

Financial. Will we spend
the investment in the team
wisely?

 We want to ensure that we have sufficient funding to deliver
the solution.

 If funding is cut back or even cut completely, at least with a
Disciplined Agile approach we’ve been delivering a
potentially consumable solution that could be deployed into
production if our stakeholders request that.

 Financial risk is often mitigated via the Secure Funding
process goal (Chapter 14) by updating our release plan and
estimate throughout the life cycle, and by providing
transparency to our stakeholders.

370

Options (Not Ordered) Trade-Offs
Life cycle. Have we
chosen the appropriate life
cycle for our initiative?

 Each life cycle has its strengths and weaknesses, even a
traditional life cycle (which isn’t supported by DA, but we
recognize that some teams will still choose to work this
way). Our team should choose the best life cycle given our
skill set and the situation we face.

 Many organizations choose to inflict a single life cycle on all
teams, often to simplify their governance, training, and other
support strategies. This increases the chance that teams will
waste effort making it appear that they’re following the
process. It also decreases the chance that our organization’s
agile transformation efforts will succeed because people will
become convinced that agile isn’t right for them, when the
real problem is that one process size doesn’t fit all.

 A long release life cycle increases the chance that we will
build the wrong thing or miss the market.

 We mitigate life cycle risk on DAD teams via having several
life cycles (Agile, Lean, Continuous Delivery: Agile,
Continuous Delivery: Lean, Exploratory, and Program) to
choose from. Chapter 6 explains these life cycles, their
trade-offs, and provides advice for when to choose each
one. A consistent set of milestones across life cycles enables
senior management to govern effectively.

Quality and testing. Will
our solution meet or
exceed the functional and
quality requirements set
out for it? Teams facing
technical or domain
complexity are likely to
face these sorts of risks.

 We want to ensure that our solution will meet the functional
requirements or fulfill the outcomes of our stakeholders. We
want to at least meet, if not exceed, their expectations so we
delight them.

 We want to ensure that our solution will meet quality
requirements related to issues like performance, scalability,
usability, and availability.

 Potential to lose market share if quality is poor.

 We will want to work with our enterprise architects, data
managers, user experience (UX) experts, and others to
identify potential quality risks.

 Quality risk is mitigated on DAD teams through explicit
requirements exploration via the process goals Explore
Scope (Chapter 9) and Produce a Potentially Consumable
Solution (Chapter 17), through the process goal Address
Changing Stakeholder Needs (Chapter 16), and through
explicit support for testing via the Develop Test Strategy
(Chapter 12) and Accelerate Value Delivery (Chapter 19)
process goals.

371

Options (Not Ordered) Trade-Offs
Requirement. Do we
sufficiently understand the
requirements? Teams
facing significant domain
complexity are likely to
face requirements risks.

 Although agilists embrace change, that doesn’t mean that all
of our stakeholders do. We need to get the “stability” of the
requirements to a point where our primary stakeholders are
comfortable with the amount of potential change they will
experience (or, to be more accurate, inject into the effort).

 Reducing the feedback cycle by building the solution
incrementally will enable us to both identify and reduce
requirements risk early.

 Early in the life cycle, we may be setting expectations about
scope, schedule, and cost that will evolve as our
understanding of the requirements evolve, and that may be
seen as a risk by some stakeholders.

 When requirements are very uncertain, our team can reduce
risk by adopting the Exploratory life cycle (Chapter 6) to
identify what customers really want. In other situations, it
may be sufficient to identify the high-level requirements
early via the Explore Scope process goal (Chapter 9) and
then allow the details to evolve via the Address Changing
Stakeholder Needs process goal (Chapter 16).

Schedule. Will we be able
to deliver in a timely
manner? The greater the
complexity faced by a
team, the greater the
chance of schedule risk.

 We want to ensure that we are able to deliver the right
business value at the right time to the right people.

 In project-based cultures, there is a risk that a desire to be
“on schedule” is misinterpreted as delivering in a timely
manner. Don’t let artificial deadlines motivate the team to
make unwise decisions.

 Schedule risk is mitigated in DAD through initial release
planning during Inception to set initial expectations, having
regular go-forward decisions throughout Construction, and
through updating the release plan throughout Construction.

Security. How can our
solution be misused to
harm our customers, staff,
or organization?

 We want to ensure that we understand the potential threats,
from both people inside our organization and from outside
of it, to our solution.

 Potential for significant loss, both monetary and image, if
security risks are not addressed.

 We will want to work with our organization’s security
engineers, if available, to explore these risks.

 Security risk is mitigated in DAD by identifying security
requirements early in the life cycle, by addressing those
requirements in both our architectural strategy and testing
strategy, and by including security engineers as stakeholders
and potentially as technical experts within the team.

372

Options (Not Ordered) Trade-Offs
Team and
organizational. What
people-oriented risks do
we face? Large teams or
teams that are either
geographically or
organizationally
distributed are likely to
face these kinds of risk.

 We want to ensure that our team has sufficient skills,
resources, and authority to fulfill our team’s mission.

 In the case of a new team, there is a risk that we may not
work well together at first.

 The existing organization culture and structure may add to
the risks faced by the team.

 We will want to work with key decision makers within our
organization to identify and mitigate these risks.

 Team and organizational risks are addressed via the Form
Team process goal (Chapter 7), the Grow Team Members
process goal (Chapter 22), and through DAD’s people-first
philosophy, which promotes collaboration, humility, and
respect.

Classify Risks

Classifying risks helps to prioritize them, which informs us about which ones to focus on. The
following table identifies several strategies, which can be combined, for classifying risks [PMI].
Note that there may be an organizational standard in place for risk classification, likely driven
by a desire for rolling up risks to the enterprise level (see the process goal Align With
Enterprise Direction in Chapter 8). If so, we need to be aware of this.

Options (Not Ordered) Trade-Offs

Assess probability. What
is the likelihood of the risk
occurring?

 Important input into assessing the urgency of a risk (see
below).

 Can be difficult to assess the probability of a risk that we
know little about, or one that has many contributing factors.

 Groups of people can downplay risks, so it’s important
for someone to question any group decisions.

Assess impact. What will
happen if the risk does
occur?

 Important input into assessing the urgency of a risk (see
below).

 Many risks are qualitative in nature, but their impact can
still be assessed quantitatively (see below).

 Some risks are “creeping risks” that start small and grow
over time. They can be difficult to identify at first and you
become inured to them over time until they become large
and difficult (if not impossible) to address.

 Risks that appear to be of low impact at the team level can
have a huge impact at the enterprise level if they occur
across teams.

Assess urgency. How
important do we consider
this risk to be?

 One way to easily calculate this is urgency = probability ×
impact.

 The urgency is an important driver of whether, and if so
when, we will address a risk.

 Because urgency is qualitative, there is the opportunity for
people to either overestimate or underestimate it given
their priorities. The implication is that we want several
people collaborating together to determine urgency.

373

Options (Not Ordered) Trade-Offs
Qualitative analysis.
How could this risk impact
qualitative issues such as
customer trust, our public
image, or staff morale (to
name a few)?

 Some risks are hard to quantify and are more subjective in
nature. Some risks are “infinite risks” that are difficult to
quantify but can also completely nullify our work (such as
persistent technical debt problems in our data or code).

 Some risks may have several potential impacts (i.e., there
is X % chance of impact A, Y % chance of impact B, and
Z % chance of impact C).

 Qualitative risks should still be quantified, but must be
done so in a consistent manner.

Address a Risk

It isn’t enough to identify potential risks, we also want to address them in some way [PMI].
Our advice is that risks should be addressed at the most responsible moment for doing so.
Although this is often earlier (avoid risk or “shift left”) rather than later, it still requires a
judgment call on the part of the team. As you can see in the following table, we have several
options for doing so.

Options (Ordered) Trade-Offs

Avoid. We steer our efforts so
that the risk doesn’t occur. For
example, we might not use a
specific technology or implement
a certain functionality.

 Very often a risk disappears if given time, so avoiding
it now may allow for this to happen.

 Our risk profile remains the same.

 Some risks grow over time, so avoiding a risk now
may make it even worse if it does occur.

 We may make decisions that hurt us in the long run.

Reduce. We work to lessen the
impact of the risk, but not fully
remove it, if/when it does occur.

 The risk is understood and the potential impact of it
is now acceptable to our stakeholders.

 Reduces the risk profile of our endeavor.

 This risk has not completely disappeared.

 Requires investment to reduce the risk, which could
have been spent on new functionality.

Mitigate. We work to remove
(fully reduce) the risk.

 Reduces the risk profile of our endeavor.

 Requires investment to mitigate the risk, which could
have been spent on new functionality.

Escalate/transfer. We ask
someone else to address the risk.
This is escalation when it is senior
leadership, and transfer when it is
another group.

 The risk is transferred to people with the ability to
address it properly.

 The risk profile of our endeavor does not change
until the risk is actually mitigated/reduced.

Accept. We decide to take on the
impact of the risk if/when it
occurs. This can be passive
(“We’ll deal with it if it occurs.”)
or active (“Let’s come up with a
plan to put into action if the risk
is realized.”).

 The risk is understood and the potential impact of it
is acceptable to our stakeholders.

 Our risk profile remains the same.

 We will need to monitor the risk even though we
have accepted it.

374

Document a Risk

Traditional risk management can be overly rigorous in its descriptions, response strategies,
and tracking. We want to keep the documentation as concise as we possibly can. Note that
regulatory compliance may require that we provide proof that we have a risk management
strategy in place, thereby requiring some sort of documentation for that proof.

Options (Ordered) Trade-Offs

Sticky notes/index cards. A
risk is captured on paper and
managed on a wall. The
stickies/cards are typically
organized as a prioritized
stack, with the high-risk items
at the top and the lowest-risk
items at the bottom.

 A simple, inclusive approach to documenting risks.

 We may still need to report risks to management as part
of our IT governance strategy.

 Regulatory compliance can be achieved by taking a
picture of our risk list on a regular basis and putting the
picture under configuration management (CM) control.

Lightweight description. A
brief overview of each risk,
perhaps with an indication of
the potential impact and
probability, is captured. This
is typically done digitally via a
spreadsheet, wiki, or agile
management tool (such as
Jira, Jile, or LeanKit).

 A straightforward strategy that works well.

 Viable in organizations new to agile that are used to
traditional, heavier forms of capturing risks.

 Regulatory compliance is achieved in most cases with
this strategy (remember to verify this by reading the
regulations).

Detailed description. A
detailed write-up of each
individual risk is captured and
maintained.

 A heavyweight, time-consuming process.

 Often applied in situations where audits or formal risk
reviews are likely.

 Life-critical regulations may require more detailed risk
descriptions, response strategies, and contingency plans.

 Traditional approaches around risk documentation
include taking either a RAID-based (risks, assumptions,
issues, and dependencies) or a SWOT-based (strengths,
weaknesses, opportunities, and threats) approach.

Track Risks

How are our identified risks going to be tracked? The following table compares strategies for
capturing and then maintaining documented risks.

Options (Ordered) Trade-Offs

Risk burndown. A chart
that shows the trend in the
risk score for the team. The
risk score is the
quantitative total of
probability × impact. An
example is shown in Figure
25.4.

 Enables us to explicitly show how our risk profile is trending
over time.

 Risk scores (as a scalar value) are not comparable across teams.
Risk trends and the change in the risk scores over time are
comparable across teams (although using metrics to compare
teams tends to be a risky strategy in practice).

 Provides important governance insight to senior management.

375

Options (Ordered) Trade-Offs
Risk backlog. Risks are
put into a backlog and
prioritized like other work.

 Teams that are familiar with managing their work in backlogs,
or better yet work item lists or work item pools, will find this
to be a straightforward strategy.

 Works particularly well when risks are monitored as an
information radiator (see below).

 When the risk backlog is part of the normal work management
strategy (such as a product backlog or work item pool), we will
need to ensure that risks are prominent so that they will be
addressed properly.

Risk list. Risks are
maintained in a list,
typically in a spreadsheet
(placed under CM control)
or a wiki page. An example
of a risk list is shown in
Figure 25.5 [PMI].

 Simple strategy that benefits from the math and reporting
functionality of spreadsheets.

 Risk lists, when not maintained as an information radiator (see
below), tend to be forgotten and unused by the team.

 Meets most regulatory requirements.

As work items. Risks, and
by implication, the work
required to mitigate each
risk, are managed as work
items in our work item
list/pool.

 Simple and straightforward approach that works well for risks
that can be mitigated quickly.

 Some risks require a significant amount of work to address,
which would need to be captured as several work items.

 With a manual work item management strategy, risks are often
captured using a specific color of sticky. With a digital strategy,
a risk work item type will need to be created, along with
supporting risk reports or dashboard widgets.

Risk register/database. A
specialized tool for
tracking risks is adopted.
Risk registers are often
maintained at the
organizational level outside
of the team so that
enterprise-level risk may be
managed [PMI].

 Useful when needing to report risks across teams, assuming
the other teams are using the same tooling in roughly the same
way.

 Often seen as a management burden by agile teams because it
is outside of their work environment.

 Risk registers, even when displayed as information radiators,
tend to get forgotten and are unused by the team.

 Very likely to meet strict regulatory requirements, particularly
in life-critical situations.

No tracking. Although we
discuss risks as a team, we
choose not to keep track of
them.

 Applicable for very low-risk situations.

 Many potential risks will be forgotten until the point that they
occur.

 Risks are typically ignored until they become a problem for the
team and are often expensive to address.

376

Figure 25.4: Example of a risk burndown chart.

Figure 25.5: A risk list captured via a spreadsheet.

Monitor Risks

We need to monitor risk over time and work to mitigate the risks appropriately [PMI]. The
following table compares common strategies for monitoring risks.

377

Options (Not Ordered) Trade-Offs

Information radiators.
Risks are displayed
publicly, either physically
on a team wall or digitally
on a team dashboard.
Also known as “big
visible charts.”

 Because the risks are “in our face,” it increases the chance
that people will understand and address the risks.

 The team’s risk management efforts are transparent to the
team and to stakeholders.

Informal reviews. The
team reviews the current
risks, updating them
accordingly. Informal risk
reviews are often
incorporated in iteration
reviews.

 Ensures that we explicitly manage our risks.

 The cadence of the informal reviews must reflect the amount
of risk faced by the team—the more risk, the more we want
to review where we are in addressing them.

 Often perceived as “yet another meeting” by the team,
particularly when the reviews are run separately from other
sessions such as coordination meetings or iteration reviews.

Audit/formal reviews.
An outside auditor
periodically works with
the team to assess their
current risk response
strategy.

 Can inject schedule delay, or last-minute scrambling to meet
a review date, into the efforts of the team.

 Can motivate creation of overly comprehensive risk
documentation in the fear that we may fail a review.

 May be required in complex or regulatory situations where
risks need to be reviewed by enterprise authorities and shared
between teams and other stakeholders.

378

26 LEVERAGE AND ENHANCE EXISTING INFRASTRUCTURE

The Leverage and Enhance Existing Infrastructure process goal, overviewed in Figure 26.1,
provides options for reusing and hopefully improving existing assets within our organization.
These assets may include guidance, functionality, data, and even process-related materials. This
process goal is related to the Improve Quality
process goal (see Chapter 18), which focuses on
strategies to pay down technical debt in such
assets, and the Reuse Engineering process blade
[AmblerLines2017], which focuses on the reuse
of existing assets.

There are several reasons why this goal is
important:

1. A lot of good work has occurred
before us. There is a wide range of
assets within our organization that our team can leverage. Sometimes we will
discover that we need to first evolve the existing asset so that it meets our needs,
which often proves faster and less expensive than building it from scratch.

2. We can reduce overall technical debt. The unfortunate reality is that many
organizations struggle under significant technical debt loads—poor-quality code,
poor-quality data, and a lack of automated regression tests are all too common. By
choosing to reuse existing assets, and investing in paying down some of the technical
debt that we run into when doing so, we’ll slowly dig our way out of the technical
debt trap that we find ourselves in.

3. We can provide greater value quicker. Increased reuse enables us to focus on
implementing new functionality to delight our customers instead of just reinventing
what we’re already offering them. By paying down technical debt, we increase the
underlying quality of the infrastructure upon which we’re building, enabling us to
deliver new functionality faster over time.

Figure 26.1: The goal diagram for Leverage and Enhance Existing Infrastructure.

Key Points in This Chapter

 Greater levels of reuse lead to lower
costs, quicker time to market, and
higher levels of quality.

 Reuse is hard—really hard.

 Paying down technical debt is
critical to your organization’s long-
term success.

379

This ongoing process goal describes how we will ensure that our team will take advantage

of, and hopefully improve, our existing organizational assets. To be effective, we need to
consider several important questions:

 How are we going to reuse an asset?

 What guidelines should we adopt and follow?

 What technical assets, such as services and legacy systems, can we reuse?

 What existing data sources can we access?

 What practices and procedures can we adopt?

Reuse Legacy Asset

When it comes to reuse, there are several important principles to keep in mind. First, you need
to make a tailoring decision when you “reuse” something. Will you work with the asset as is,
configure it, refactor it to pay down any technical debt that you have found, or evolve it to
meet your full needs? These options range from zero tailoring to significant tailoring, and the
more you tailor an asset, the more likely it is that it would be better for you to not try to reuse
it at all. Second, reused assets will need to evolve over time, implying that we may need to
bring those changes into our solution. This is great if there is an automated regression test
suite in place for the asset (if appropriate) and our team regularly releases into production. It’s
not great if we’re taking a project-based approach and we don’t currently have plans for future
releases. Third, building something to be reusable is hard. Having said all of these things, we
are still firm believers in reuse in the proper context. You can see in the following table that
there are several options for reusing legacy assets.

Options (Ordered) Trade-Offs

Configure asset.
The asset is reused
without
modification to the
code, but
configuration
information is
modified to tailor
the asset’s behavior.

 Increases the quality of our solution (reusable assets are usually
very high in quality).

 Reduces overall technical debt within our organization.

 Better time to market for our team because we can focus on
achieving the unique aspects of the outcomes that we’ve
committed to.

 We may be able to get help from our organization’s reuse
engineering team (see the Reuse Engineering process blade
[AmblerLines2017]).

 Provides greater flexibility than a nonconfigurable asset.

 Requires greater investment in the development of the asset to
make it configurable.

 Not everything we need may be configurable. We may need to
submit new functionality to the owner, or work with them to get
the functionality that we need.

 We need to invest the time to learn how to configure the asset.

380

Options (Ordered) Trade-Offs
Use as is. The asset
is reused without
any modification.
Examples include
invoking an existing
service or working
with a commercial
code library.

 Increases the quality of our solution (reusable assets are usually
very high in quality).

 Reduces overall technical debt within our organization.

 Better time to market for our team because we can focus on
achieving the unique aspects of the outcomes that we’ve
committed to.

 We may be able to get help from our organization’s reuse
engineering team (see the Reuse Engineering process blade
[AmblerLines2017]).

 The asset may not provide all the functionality we need. We may
need to submit new functionality to the owner, or work with them
to get the functionality that we need.

Evolve reusable
asset. The asset is
evolved to meet the
needs of the team,
and the changes are
made available to
other users of the
asset.

 We can ensure that the reusable asset meets our needs.

 It may take a lot of effort to negotiate and then work with the
owner of the asset to evolve it.

 The changes that we need may not be of interest to others, and
may be rejected by the asset owner.

 It can be expensive and difficult to develop reusable assets,
requiring sophisticated engineering skills that we may not have on
our team.

 The new or evolved feature(s) are not reusable until they’ve been
reused, implying we risk overbuilding an asset in the name of
potential reusability.

 We should get help from our organization’s reuse engineering
team (see the Reuse Engineering process blade
[AmblerLines2017]).

Copy and tailor. The
asset is copied and
the team evolves the
copy to meet their
needs.

 A quick and easy approach, at least in the short term.

 We get what we want.

 If we need to make a lot of changes to the asset we may have been
better off developing that functionality from scratch.

 There is a potential to miss out on future changes of the original
asset, or we may need to perform a potentially expensive refit to
accept the new version.

 Increases the overall technical debt in our organization because
multiple copies of the same asset exist.

Adopt Guidance

An easy way to improve the quality of our work is to adopt and then follow, where
appropriate, commonly accepted guidance (see the Improve Quality process goal of Chapter
18 for other strategies). Effective guidance is an enabling constraint that provides guardrails
for teams. Another benefit of adopting common guidance is that it is a great way to share
learnings across the organization. The topic of guidance may address a specific technology
(i.e., MongoDB), a programming language (e.g., Java or Python), a platform (e.g., Linux or
MQSeries), or even an activity (e.g., security or user experience). Examples of potential
guidance include coding standards, user interface (UI) guidelines, security guidelines, data
standards, and many more.

381

Our experience is that the best guidance comes from proven practice tempered with the
insights of people with experience in that topic. Figure 26.2 captures the life cycle of the
development and evolution of guidance. The need for guidance often starts with a team.
They’re working with a topic where the organization doesn’t have existing guidance and they
recognize the need for it. Sometimes an enterprise team may be waiting for a delivery team to
run into the need for the guidance, and may have even gotten a bit ahead of things and have
begun working on what they believe to be appropriate guidance. Either way, the enterprise
team and the delivery team collaborate to develop guidance that is appropriate for the situation
at hand. This strategy helps to ensure that the practical considerations of the team are
addressed, that the guidance is developed on a just-in-time (JIT) basis, and that long-term
enterprise concerns are also taken into account. In Figure 26.2, you see that team A and the
enterprise team work together to develop and then apply the initial draft of the guidance. The
appropriate enterprise team is determined by the topic. For example, data guidance is typically
the responsibility of the data management team, technical guidance is the responsibility of the
architecture team, security standards is the responsibility of the security team, and so on. Once
the guidance is shown to be effective in practice, the responsibility for it is taken over by the
enterprise team. You can also see in Figure 26.2 that the enterprise team provides the guidance
to other delivery teams, in this case, team B and team C. Evolution of the guidance occurs
over time, with the enterprise team working closely with delivery teams to do so (which team
C is doing in Figure 26.2).

Figure 26.2: Collaborative development and support of guidance.

As you can see in the following table, we have several options for adopting guidance within
our team. In all cases, our advice is to keep the guidance lightweight, easy to read and
understand, easy to access (maintaining it in a wiki works well), and most importantly practical.

382

Options (Ordered) Trade-Offs

Adopt enterprise
guidance. Our organization
has recommended guidelines
that teams are expected to
adopt. Enterprise guidance is
often based on industry
guidance that is adapted to
the organization (hopefully
with slight modifications).

 Common guidance across teams increases the chance
that team members coming from existing teams will
know it.

 Enterprise guidance is likely to be proven to work within
our organization.

 Following enterprise guidance decreases the chance that
we’ll inject technical debt based on inconsistent work.

 The team will need to familiarize itself with the guidance.

 Enterprise guidance needs to be supported and evolved
over time, otherwise it goes stale and will be ignored.

Evolve enterprise
guidance. When existing
enterprise guidance doesn’t
perfectly fit our situation, or
when the topic of the
guidance has evolved, our
team should work with the
enterprise team responsible
for the guidance to evolve it.

 We will have guidance that fits with our situation.

 Easier than developing our own from scratch.

 Our team will need to invest the time to work with the
enterprise group responsible for the guidance to evolve
it to meet our needs.

Adopt industry guidance.
Many platforms, languages,
and technologies have
recognized guidelines for
their effective usage.

 The guidance has been proven to work in other
organizations.

 The source of a topic likely knows it best and will
produce better guidance.

 External parties have taken on the cost of developing and
maintaining the guidance.

 New hires are more likely to know the industry guidance
than something we created in house.

 It is better to first try to adopt existing enterprise
guidance, then if that doesn’t exist, work with the
appropriate enterprise team to adopt industry guidance.

 Industry guidance is a good starting point, although we
may need to modify it for our unique situation.

 The industry guidance may not be evolved in a timely
manner, or updates to the industry guidance may be
difficult to bring into our modified version.

Develop new guidance.
When no guidance exists for
a given topic, our team may
find that it needs to develop
the initial draft of the
guidance, often collaborating
with an enterprise team to do
so.

 We are able to develop guidance that exactly meets our
needs.

 This requires a lot of work and should be seen as a
strategy of last resort.

 We will need to maintain the guidance over time.

 We may not have the expertise on the team to develop
effective guidance (although we may believe we do).

 Other teams may follow a different strategy, leading to
collaboration and integration problems later and thereby
increasing technical debt.

383

Work With Legacy Functionality

In many organizations, there is a significant amount of functionality available to reuse. This
functionality may include web services, microservices, frameworks, domain components,
platforms, code libraries, and many other technologies. Disciplined Agilists will reuse these
existing assets whenever they can, and more importantly they will pay down technical debt
that they run into so that the functionality becomes a true organizational asset. Greater reuse
and the investment in quality enables us to increase our overall consistency of service and
potentially enables DevOps through promoting a common infrastructure. You can see in the
following table that there are several options for working with legacy functionality.

Options (Not Ordered) Trade-Offs

Use existing assets. Use
the existing asset as is.

 This is a straightforward strategy requiring minimal effort
by the team.

 We will need to invest the time to understand the asset,
which is best done by working closely with the enterprise
team (see Coordinate Activities in Chapter 23).

 Our solution will now have a dependency on the asset.

 Promotes greater consistency across solutions.

Adopt external assets.
The team downloads (in the
case of open source),
purchases (in the case of
commercial products), or
obtains access to (for cloud-
based services) assets that
are currently external to our
organization for use in
building their solution.

 This is often faster and cheaper than building the asset.

 We will need to work with the enterprise groups to ensure
it’s on the roadmap (or at least not prohibited by the
roadmap).

 We may not be able to find an external asset that is a
perfect fit, requiring us to evolve it. The more we need to
modify it, the less the benefit of reusing the asset.

 Our solution will now have a dependency on the asset.

 There is a potential for unexpected costs in the future.

 There may be a negative impact in the future if the asset
provider changes direction or abandons the asset.

Refactor existing assets. The
team improves the quality of
an existing asset while using
it in building their solution.
See the Improve Quality
process goal (Chapter 18).

 Pays down organizational technical debt.

 Decreases the risk of using the asset due to increased
quality.

 Requires investment of time and money.

Develop reusable assets.
The team develops
something with the intent
of making it available for
others to reuse. See the
Reuse Engineering process
blade [AmblerLines2017]
for strategies to develop
reusable assets.

 We will develop a high-quality asset that works well for us.

 Requires skill and significant investment in quality and
design.

 It is very hard to predict what others will want and this
strategy often leads to a “reuseless asset” that nobody else
is interested in. It is usually better to wait until another
teams needs it and then do the work to harvest, rework,
and then reintegrate the asset.

384

Work With Legacy Data

Our organization likely has many data sources that we can potentially reuse. In particular, we
should always strive to work with the “source of record” (SoR) for any given data to work
with the “official” values. If we instead choose to create yet another data source we are
effectively increasing the technical data debt within our organization. Yes, working with
existing legacy sources can be frustrating at times, particularly when the owners of those
databases work in a less-than-agile manner (see AgileData.org for agile strategies for data
professionals). Because Disciplined Agilists are enterprise aware, we understand that it’s for
the good of our organization that we strive to leverage and enhance existing data sources
whenever possible. The following table describes several options for doing so.

Options (Ordered) Trade-Offs

Database consolidation.
We refactor existing
databases to move critical
data into a smaller number
of SoRs, while
simultaneously refactoring
our solutions to work with
the SoRs.

 Pays down data-oriented technical debt.

 Increases data consistency and quality across solutions.

 Makes data warehousing easier due to having fewer data
sources to work with.

 Requires investment and often significant effort.

 Must be thoroughly tested, requiring automated regression
tests that don’t (yet) exist.

Database refactoring. We
apply refactorings, small
changes to the design that
improve without changing
its semantics in a practical
manner, to fix any
problems before we use the
data source in a solution
[DBRefactoring].

 Pays down data-oriented technical debt.

 Higher quality data sources means our code can be simpler
as we won’t need to code around data-quality problems
anymore.

 Requires skill and tooling infrastructure (many options
now exist).

 We will require an automated regression test suite for the
database if we are to safely refactor it.

Use existing data
sources. The team uses the
existing data source(s) as is.

 We do not need to do the work to create and then maintain
a new data source.

 Appropriate when the data source or SoR is of high quality.
Otherwise it should be considered for refactoring or
consolidation.

 Any data-quality problems are addressed within our source
code, thereby increasing technical debt.

Work With Process Assets

Just because our team finds itself in a unique situation, that doesn’t imply that we need to
develop our own process from scratch (as this book should make readily clear). We can and
should reuse existing process assets, particularly when we are working in a regulatory
environment where we are required to have a defined process to follow (and proof of doing
so). We should also help to evolve these assets as we learn and improve so that others can
benefit from our experiences. As you can see in the following table, we have several options
for working with our organization’s process assets. For greater detail, see the Evolve Your
Way of Working (WoW) process goal (Chapter 24).

385

Options (Not Ordered) Trade-Offs

Adopt existing templates.
The team chooses to apply
existing artifact templates,
typically for documentation.
See the process goal Improve
Quality (Chapter 18) for a
discussion of templates.

 Increases consistency of artifacts across teams.

 Concise templates tend to lead to focused documentation,
albeit with “free form” sections for the unique parts.

 Comprehensive templates tend to lead to low-quality
documentation.

Adopt external process
assets. The team adopts
existing process advice
(practices, strategies, even
entire methods) from
external sources.

 The process/method might not be a very good fit for our
actual situation.

 You may not be able to find external people experienced in
that process asset.

 Even when it is a good fit for us, the process/method will
still require some tailoring.

 The trade-offs that you’re making may not be explicitly
described (unlike with DA).

Evolve process assets. The
team updates existing process
assets, including external ones,
to reflect potential
improvements. See the
Continuous Improvement
process blade
[AmblerLines2017] for detailed
advice.

 Increases the process fit with the rest of the organization.

 Enables the team to share learnings with others.

 Requires investment of time and effort.

 Changes to the existing assets need to be coordinated across
teams, often something a community of practice (CoP)/guild
does.

Share process learnings. The
team shares their potential
improvements with others.
See the Continuous
Improvement process blade
[AmblerLines2017] for
detailed advice.

 Increases overall organizational effectiveness.

 Requires investment of time and effort.

 Requires venues/opportunities for the team to share, such as
lunch-and-learns, internal discussion forums, or open spaces.

Tailor existing process.
The team tailors existing
process assets to meet the
needs of the situation that
they actually face.

 Increases the process fit with our situation.

 Requires skill and expertise.

 Requires the team to have somewhere to publish then
maintain our process, such as a wiki or internal website.

386

27 GOVERN DELIVERY TEAM

The Govern Delivery Team process goal, overviewed in Figure 27.1, provides options for
governing agile and lean delivery teams. Governance establishes chains of responsibility,
authority, and communication in support of
the overall enterprise’s goals and strategy. It
also establishes measurements, policies,
standards, and control mechanisms to enable
people to carry out their roles and
responsibilities effectively. You do this by
balancing risk versus return on investment
(ROI), setting in place effective processes and
practices, defining the direction and goals for a
team, and defining the roles that people play
within a team.

The Govern Delivery Team process goal is
supported by both the IT Governance and the
Control process blades [AmblerLines2017].
There are several reasons why this goal is important:

1. We are going to be governed. Many in the agile community believe that governance
is a swear word, likely because they’ve had negative experiences when traditional
governance strategies [COBIT] were applied to agile teams. Although we understand
this attitude, we find it to be counterproductive because someone is going to govern
our teams, like it or not. Someone will govern the finances, they will govern the
quality, and they will govern what we produce—just to name a few issues.

2. We deserve to be governed well. Our team is made up of intellectual workers,
people who are smart and skilled at their jobs. They respond well to leadership, to
deciding for themselves what to do, and not very well to management or being told
what to do. As a result, effective governance is based on motivation and enablement,
not command and control.

3. Governance is context sensitive. The way a team is governed is situational. A
traditional waterfall team is governed in a very different way than an agile project
team, which in turn is governed in a different way than a team following the
Continuous Delivery: Lean life cycle. Teams that are less experienced or facing
significant risk will require more governance than those that are not.

4. Our team is part of a larger organization, and we need to leverage that. Our
organization is a complex adaptive system (CAS), a collection of teams working
together in an adaptable and constantly changing manner. And we’ve been doing this
for a very long time, in some cases decades and even centuries. We have a wealth of
experience, skills, intellectual property, and physical assets available to us that we can
use in new ways to delight our customers. The point is that we don’t need to work
on our own, and in fact we likely can’t given the complexity that we face, and we
certainly don’t need to build everything from scratch.

5. Effective governance enables collaboration. Given that our organization is a CAS,
the leaders who are governing us must focus on helping our teams to be successful.
This includes ensuring that we have the resources we require to accomplish our
mission and to ensuring that we’re collaborating effectively with the other teams

whom we need help from.

Key Points in This Chapter

 Agile/lean teams will be governed
by your organizational leadership,
and they deserve to be governed
well.

 Effective governance is about
motivating people to “do the right
thing” and then enabling them to do
so.

 Ineffective governance is about
enforcing consistency, processes, or
deliverables across teams.

387

6. We have responsibilities to external stakeholders. Our team has stakeholders to
whom we are beholden, and one aspect of governance is to ensure that our team
meets their needs. These stakeholders include auditors who need to ensure that we’re
compliant to any appropriate regulations or internal processes, legal professionals
who help us to address appropriate legal issues, and company shareholders (citizens
when we work for a government agency or nonprofit) whom we effectively work for.

Figure 27.1: The goal diagram for Govern Delivery Team.

388

The potential scope of governance is depicted in Figure 27.2. Our focus in the process
goal is on delivery/development governance, but as you can imagine the other governance
categories have an effect on it. For example, solution delivery teams will still be governed in
their use of data, guided by user experience (UX) standards, and funded in accordance to
finance guidelines, while fulfilling roles supported by people (management) governance.

Figure 27.2: The scope of governance.

Throughout this chapter, we use several terms that we want to define now:

 Leadership (n). People within our organization, often senior management, who are
leaders.

 Enterprise groups. Teams responsible for information technology (IT) or
enterprise-level activities such as enterprise architects, finance, security, and
procurement [AmblerLines2017].

 Enterprise professionals. People such as enterprise architects, finance
professionals, security engineers, and procurement specialists.

This ongoing process goal describes how we will ensure that our team is successful. To be
effective, we need to consider several important questions:

 How can leadership motivate staff to be enterprise aware?

 How can leadership enable teams to follow their vision?

 How will we provide visibility to our stakeholders?

 How will we measure our effectiveness as a team?

 How will we regularly determine how we will move forward as a team, if at all?

 How will we run reviews, if at all?

 How will we run demonstrations?

Motivate Enterprise Awareness

An important aspect of effective governance is to help teams understand and then work in an
enterprise-aware manner. Enterprise awareness is one of the seven principles of the
Disciplined Agile (DA) tool kit (see Chapter 2), and it refers to the concept that people should

389

strive to do what is right for the organization, not just what is convenient for them. In other
words, to understand and work toward the “big picture.” For this to work in practice, people
need to understand what that big picture is and why it’s important; we need to motivate them
to be enterprise aware. As you can see in the following table, there are several options for
doing so.

Options (Ordered) Trade-Offs

Collaboratively developed
vision. The “governed” are
actively involved with the
development and evolution of
the organization’s vision.

 Increased buy-in to the vision from the people meant
to follow it.

 There’s a greater chance that the vision will be realistic
due to a wider range of people involved.

 It takes time and effort, and more of it due to the
greater number of people involved.

Collaborative enterprise
groups. Enterprise groups
collaboratively work with
teams. Part of this collaboration
is to help the team achieve its
mission and another part is to
educate and coach the team in
the skills and knowledge of the
enterprise-level topic.

 Increases the chance that delivery teams will follow the
vision, reuse organizational assets, and follow
guidance.

 Requires the enterprise groups to be sufficiently
flexible to work with a range of teams, each of which
has their own way of working (WoW).

 Requires the enterprise group to be sufficiently staffed.

Collaborate with other
teams. Our team is only one of
many within the organization
and we often need to
collaborate with other teams to
achieve the outcomes that we
want.

 Other teams can help our team to achieve the
outcomes that we’re aiming for more effectively than
if we worked alone.

 Interacting with other teams provides opportunities to
learn about their viewpoint and priorities, helping us to
understand the bigger picture.

 The other teams may not be willing, or able, to work
in an agile manner and may need help to do so.

 Collaboration with other teams may introduce
bottlenecks in our workflow that will need to be
addressed.

Educate staff. Our
organization must educate,
train, and coach staff members
in enterprise-level concerns
such as security, our business
vision, our technical vision, and
many other critical issues.

 Increased knowledge within a team increases the
chance that people will act in an enterprise-aware
manner.

 The more knowledge and skills within a team, the less
support the team will need from enterprise groups.

 Enables the team to optimize the overall workflow
because they have a better understanding of the overall
strategy.

 Requires ongoing investment.

Communicate vision.
Leadership must consistently
communicate their vision, and
the reasons behind the vision,
to the rest of the organization.

 Increases the chance that people will understand the
organization’s direction and priorities.

 Requires ongoing effort due to the need to reinforce
the (evolving) vision.

 Requires several communication channels due to
differences in learning preferences.

 No guarantee that everyone will listen.

390

Options (Ordered) Trade-Offs
Roadmaps and guidance
(lightweight). Our organization’s
business and technical roadmaps
as well as guidance in enterprise
issues such as security, data,
operational excellence, user
experience (UX), and many more
topics is captured in a concise and
easily consumable manner.

 Provides guardrails, also called “enabling constraints,”
for teams.

 Increased probability that people will read the artifacts
compared with detailed artifacts.

 The details won’t be there, requiring another strategy
(such as collaborative enterprise groups) to get the
details to teams.

 Investment is required to keep the artifacts up to date.

Roadmaps and guidance
(detailed). Our organization’s
roadmaps and enterprise
guidance are captured in detail
and made accessible to the
appropriate audiences.

 Provides explicit guardrails for teams.

 Detailed information is available to anyone who
requires it, anytime and anywhere it’s needed.

 Detailed documentation is the least effective means
available to communicate information, and people are
less likely to trust it.

 Significant investment is required to keep the artifacts
up to date.

Enable Teams

Agile team members are human, and being human, their natural tendency is to do the easiest
thing possible. The implication is that for things that we want to have happen, we should
enable the teams to do those things, to make them easy to do. Effective governance strategies
focus on making it as easy as possible for people to follow the organization’s vision—and
painful not to. As you can see in the following table, we have several options for doing so.

Options (Ordered) Trade-Offs

Empowered teams. The team
has the authority and resources
that it requires to fulfill its
mission.

 Teams will still require some guidance/guardrails.

 Provides flexibility to the team to do what is best for
the context that they face.

 Requires organizational leadership to trust the teams.

 Can be disconcerting, at first, for command-and-
control leaders.

Host leadership. A host is
someone who receives and
entertains guests. Sometimes they
act as a hero, planning and
organizing things. Sometimes
they act as a servant, encouraging,
providing space, and joining in
[Host].

 Provides the flexibility for teams to choose their way
of working (WoW) while providing the support and
guidance they need.

 Requires skills and resources to be the hero when need
be.

 Coaching is often required to help leaders evolve away
from a command-and-control mindset.

391

Options (Ordered) Trade-Offs
Clear roles and
responsibilities. The roles
(such as team lead, team
member, product owner, and
architecture owner) and their
responsibilities are defined and
accepted by the team. This
information is often captured,
or at least referenced, in the
team’s working agreement.

 Provides clarity regarding decision-making authority.

 Can dramatically reduce “politics,” both within a team
and with external groups.

 Requires everyone to agree to the roles and
responsibilities, in particular leadership roles.

 Agile roles and responsibilities tend to be empowering,
which is threatening to command-and-control
managers.

Infrastructure as code.
Common monitoring,
measurement, and reporting
functionality are automated.
This may include code and data
analysis tooling to monitor
quality, logging functionality to
record important events such as
builds and deployments, and
automated dashboards [Kim].

 Guidance can be checked automatically using open
source or commercial tooling.

 Makes it easier for teams to follow the organizational
guidance because it’s automated.

 Supports evidence required for regulatory compliance.

 Supports greater transparency and accuracy of
information, thereby improving decision making.

Whole governance. The
governance body, sometimes
called a governance team or
control tribe, is whole in that it
contains people with sufficient
skills and expertise so that
between them they can govern
all aspects of solution delivery.
These aspects may include
security, data, finance, quality,
user experience (UX), and
more. See Figure 27.2 for
potential governance aspects.

 Single point of governance direction, increasing clarity
for the team.

 Streamlines overall governance because it is addressed
in a holistic manner.

 Easier to ensure regulatory compliance due to
consistent guidance from a single source.

 Requires greater knowledge, generally, from the
governance body.

Servant leadership. A servant
leader shares power, putting the
needs of the people that they
lead first, helping them to
develop and to perform [W].

 Can be very effective at helping teams to streamline
their work.

 Enables teams to focus on their mission and not on
organizational politics or resourcing challenges.

 Servant leaders need the authority, or at least the right
connections, to actually help.

 Many command-and-control managers struggle with
this at first.

 Requires skill and experience. Many scrum masters
struggle with this because they don’t have the authority
or connections required.

392

Options (Ordered) Trade-Offs
Exceptions to the rules.
Teams are allowed to deviate
from the accepted guidance but
are asked to justify why they
need to do so.

 Can be easily abused if teams are not required to justify
the exception or if management requires onerous
justification.

 Works well when used sparingly. If there are good
reasons to support many exceptions, that’s an
indication that the guidance needs to evolve to handle
the current situation.

 Enables teams to have reasonable flexibility and
remove guardrails when they aren’t needed or
appropriate.

Specialized/siloed governance.
There are several governing
bodies applicable to a team,
each of which is specialized in
one or more aspects (security,
data, UX, etc.) that need to be
governed. See Figure 27.2 for
potential governance aspects.

 Enables our organization to ensure that specialized
areas/topics are addressed.

 Multiple points of governance lead to overlap,
inconsistency, and significant waste for the teams.

 Often leads to many specialized “quality gates” or
reviews.

 Ensuring regulatory compliance can be difficult due to
inconsistent interpretations by each silo.

 Significant governance burden on the teams.

Autocratic leadership.
Autocratic leaders tell people
what to do, they often dictate
the time and cost allowed to do
it, and may even dictate how
people are to do their work.

 Comfortable for existing command-and-control
managers.

 Intellectual workers generally don’t like to be told what
to do and will often ignore autocrats and instead do
what they feel is right.

 Likelihood that the team will create artifacts solely to
be compliant, increasing waste.

 Can kill motivation of team members, because
autocratic decisions reduce people’s autonomy,
thereby reducing overall productivity.

Provide Transparency

Transparency enables governance. When our team provides transparency about what we’re
doing and how we are doing it, then people outside of our team, including our organizational
leadership, can make better decisions due to having more accurate information. This has a
positive side effect of putting them in a better position to work with us effectively and actually
help us in practice! Similarly, when we have transparency into what other groups are doing we
can make better-informed decisions that will lead to better collaboration with them. As you
can see in the following table, we have several options for providing greater transparency.

393

Options (Ordered) Trade-Offs

Automated dashboards. Team
dashboards that use business
intelligence (BI) technology to
display real-time measures
generated by the use of
development tools and the
ongoing use of the solution in
production. Also known as
development intelligence (DI).

 This enables both the team and our stakeholders to
monitor the team’s progress in a continuous, real-time
manner.

 Our team can tailor the dashboard to provide insight
into what we currently hope to improve.

 The information displayed on the dashboards is
accurate because it is automatically generated as a side
effect of tool usage.

 This approach is effectively free after the initial cost of
setting up the dashboard technology.

Consistent metric categories.
Teams are asked to report
measures in a common set of
categories such as quality, staff
morale, and time to market. The
team is required to provide
sufficient insight in each
category, but is free to take the
appropriate measures (for them)
in that category. See Figure 27.3
for an example of metrics in
three different categories for
three different teams.

 Provides flexibility for teams, yet enables monitoring
against organizational goals.

 It is possible to compare teams (which can be
dangerous) based on their scores or, better yet, trends
in a given category.

 It is still possible to suggest a common set of metrics
in a given category, although teams should be allowed
to opt out if they can justify why that metric doesn’t
apply.

Visualize workflow. The team
visualizes their workflow via a
task board or Kanban board
(sometimes called a scrum
board). This can be physical
using sticky notes on a
whiteboard or wall, or digital
using an agile management tool
such as Jira, Jile, or Trello. These
boards are one type of
information radiator
[Anderson].

 Improves the team’s ability to coordinate their efforts
and to identify potential bottlenecks.

 Makes the current workload transparent to
stakeholders.

 Enables prioritization discussions and scheduling
discussions within the team

 Makes it clear who has capacity (and who doesn’t).

 Requires the team to keep the board up to date.

Information radiators. Critical
team information, such as
architecture diagrams,
requirements artifacts, and task
boards, are displayed in a publicly
accessible manner. Information
radiators are often physical, such
as sketches on whiteboards, but
can be digital as well (for example,
our team’s automated dashboard
and task board can be displayed
on monitors on the wall of the
team’s workroom)
[CockburnAgile].

 Increases visibility of critical information within the
team.

 Increases visibility to stakeholders, assuming they can
access the information radiators.

 Increases stakeholders’ trust in the team.

 Requires physical wall space or access to digital tooling
(such as automated dashboards).

 Physical radiators don’t work well when some team
members are geographically distributed.

 It is difficult to hide “bad news” or other unpleasant
information.

394

Options (Ordered) Trade-Offs
Self-serve demo environment.
Our team regularly deploys the
current working version of our
solution into an environment
where our stakeholders can
access it and work with it at any
time.

 Increases opportunities for stakeholder feedback.

 Increases stakeholders’ trust in the team.

 Good way to develop our continuous deployment
(CD) strategy, reducing our overall deployment risk
when doing so into production.

 Requires initial creation of the environment, plus
ongoing updates into the environment.

Demos. We demonstrate the
current version of our solution
to a subset of our stakeholders.
See the decision point Demo
Strategy below for greater detail.

 Increases opportunities for feedback from
stakeholders.

 Increases stakeholders’ trust in the team.

 Provides stakeholders with concrete transparency
(many software development artifacts are too abstract
or too detailed for them to work with).

 Requires investment of time and effort to organize,
run, and then act on the results.

 Demoing is a skill which may require coaching and
even training.

 An unexpected bug during a demo can be problematic,
particularly in low-trust environments.

Definition of ready
(DoR)/definition of done
(DoD). Our DoR defines the
minimum criteria that a work
item must meet before our team
will work on it. Similarly, the
DoD defines the minimum
criteria that a work item must
meet before our stakeholders
will accept it as completed/done
work [Rubin].

 A DoR can help avoid delay from having to wait for a
work item to be better described, and decreases the
chance of rework due to fuzzy requirements.

 A DoR is a “quality gate” which protects the team
from poorly formed work items.

 A DoD is a simple service-level agreement (SLA) that
ensures the team produces work that meets the needs
of stakeholders.

 A DoD increases the trust of stakeholders in the ability
of the team to deliver.

 DoRs can be difficult to meet when product owners
are new to the job or are overwhelmed with work (the
implication is that the team will need to help them).

 DoRs can be an excuse for product owners to produce
artifacts instead of sitting down with the team and
having a conversation.

 DoDs become complex with practices such as
Continuous Documentation – Following Iteration (see
Produce Potentially Consumable Solution in Chapter
17) or parallel independent testing (see Accelerate
Value Delivery in Chapter 19) because some work isn’t
truly “done” by the end of the iteration.

Milestone reviews. We hold an
explicit review at important,
risk-based milestones in the life
cycle. See the Milestone Review
Strategy decision point for
details.

 See the trade-offs associated with the various
techniques described by the Milestone Review Strategy
decision point.

395

Options (Ordered) Trade-Offs
Update release plan.
Throughout our endeavor we
update the release plan, either
the projected delivery date or
cost (often both), whenever new
knowledge informs us that the
schedule/cost has shifted.

 Sets expectations around schedule and cost.

 Can be disconcerting early in life cycle when the
numbers may be evolving significantly, particularly
when stakeholders are not used to that level of
transparency.

 Typically better to present ranged plans (via ranged
burnup/burndown charts, perhaps) than point-
specific projections, but only if stakeholders are used
to dealing with projections presented that way.

Status reports. The team
produces a status report (often
the team lead will do this) to
summarize the current state of
the endeavor and what has
happened since the last status
report.

 Often works of fiction because the status reports are
handcrafted and thus contain whatever information
the creator(s) decided to capture.

 Requires time and effort to develop the report.

 Team status often improves due to management
massaging the information, sometimes referred to as
green shifting, as it moves up the hierarchy.

 Organizations with cultures that do not promote
psychological safety will motivate teams to avoid
sharing unpleasant, yet incredibly important,
information in their status reports.

Consistent metrics. Teams are
asked to report on specific
measures, such as production
incidents, cycle time, or velocity,
so that stakeholders are
provided with a consistent view
into each team.

 Enables leadership to measure teams consistently.

 The metrics aren’t meaningful in every situation,
therefore their collection is a waste (often resulting in
inaccurate information anyway) when they aren’t
appropriate.

 Leadership will miss key information that is applicable
to the team if it isn’t asked for.

 Metrics collection is perceived as a waste by the team
in these situations, and we typically forgo important
intelligence that would enable us to improve.

396

Figure 27.3: Metrics gathered by three different teams across a consistent set of
categories.

Measure Team

Metrics should be used by a team to provide insights into how they work and provide visibility
to senior leadership to govern the team effectively. When done right, metrics will lead to better
decisions which in turn lead to better outcomes. When done wrong, your measurement strategy
will increase the bureaucracy faced by the team, will be a drag on their productivity, and will
provide inaccurate information to whoever is trying to govern the team. There are several
measurement strategies overviewed in the
following table. Here are several
heuristics to consider when deciding on
your approach to measuring your team:

 Start with outcomes. The
metrics you gather should
provide insights into whether we
are achieving the outcomes
(goals, objectives) that we desire.

 There is no “one way” to
measure. Every team is unique,
you need to work through your
measurement strategy to get it
right.

 Every metric has strengths
and weaknesses. We’re going
to need to collect several metrics
to provide sufficiently robust
insight.

 Use metrics to motivate, not
to compare. Whenever
leadership applies metrics to

397

compare people or teams, even if it’s to reward them, the likelihood that the metrics
will be gamed increases.

 You get what you measure. The way that a team is measured will change its behavior,
although perhaps not in the way that you had hoped for.

 Teams use metrics to self-organize. Metrics provide insights to teams that indicate
potential issues or opportunities that they may want to address.

 Measure outcomes at the team level. Start by identifying the outcomes or goals that
you want to achieve, such as improving quality or time to market, and then collect
metrics that will provide insight into whether you are achieving those outcomes.

 Each team needs a unique set of metrics. Every team is unique, facing a unique
context and therefore will need to collect metrics that are appropriate for them.

 Measure to improve. Our team should use metrics to help us identify where we need
to improve. We should be competing against ourselves, not others.

 Have common metric categories across teams. Leadership can motivate
achievement of organizational goals through metrics categories (see Figure 27.3 for an
example).

 Trust but verify. Leadership should trust their people to do the right thing, but use
metrics to monitor what is happening so as to identify teams that potentially need
assistance.

 Don’t manage to the metrics. Metrics provide insights, but if leadership wants to
know what is actually happening then they need to go and talk with the team.

 Automate wherever possible. This reduces the cost and accuracy of the metrics, and
can enable real-time monitoring by the team.

 Prefer trends over scalars. The change in value of a metric over time will provide
insight into whether something is improving (or not), which is likely the outcome
you’re trying to achieve.

 Prefer leading over trailing metrics. A leading metric provides insight into what is
happening, or better yet what is likely to happen, whereas a trailing metric indicates
what has happened. Leading metrics provide insights that enable us to make decisions
that could affect future outcomes.

 Prefer pull over push. Metrics should be available whenever people want them, often
via an automated dashboard, to provide insights when decisions need to be made.

398

Options (Ordered) Trade-Offs

Goal question metric
(GQM). The team identifies
the goals (outcomes) they are
trying to achieve, the
questions they need to answer
to determine if they are
achieving their goals, and then
metrics they can gather to
provide insight into the
questions [W].

 Enables teams to identify the metrics that will provide
insights to them given the context that they face.

 GQM can and should be applied in a very agile manner.

 Tends to be easier to adopt than OKRs (see below), as the
middle step of identifying questions makes GQM more
concrete.

 GQM has been adopted in a very heavyweight manner in
some organizations, so some practitioners may be leery of
adopting this strategy.

 Can be applied at the organization, team, and personal
levels.

 Stakeholders can be frustrated due to a lack of
consistency across teams (so ask teams to take a
consistent metric category approach).

Objectives and key results
(OKRs). Desired objectives
(outcomes) drive the
identification of measurable
key results [W].

 Enables teams to identify the metrics that will provide
insights to them given the context that they face.

 Many teams find OKRs to be too abstract and, as a
result, misexecute on their application.

 Can be applied at the organization, team, and personal
levels.

 Stakeholders can be frustrated due to a lack of
consistency across teams (so ask teams to take a
consistent metric category approach).

Consistent metrics. Teams are
asked to report on specific
measures (such as production
incidents, cycle time, or
velocity) so that stakeholders
are provided with a consistent
view into each team.

 Enables leadership to measure teams consistently.

 The metrics aren’t meaningful in every situation, therefore
their collection is a waste (often resulting in inaccurate
information anyway) when they aren’t appropriate.

 Leadership will miss key information that is applicable
to the team if it isn’t asked for.

 Metrics collection is perceived as a waste by the team in
these situations, and we typically forgo important
intelligence that would enable us to improve.

Popular metrics. Our team
adopts metrics based on how
commonly they are applied
elsewhere, perhaps adopting
metrics prescribed by a
method, whatever our tools
provide by default, or based on
a “top 10 agile metrics” article.

 Quick way to get some measures in place.

 The metrics aren’t meaningful in every situation,
therefore their collection is a waste (often resulting in
inaccurate information anyway) when they aren’t
appropriate.

 The team is very likely going to miss important insights
when the choice of metrics isn’t driven by outcomes.

399

Options (Ordered) Trade-Offs
None. The team decides to
not collect any measures at all.

 The team avoids the overhead to put the metrics in
place.

 May work well in small organizations where leadership
can monitor the team in other ways such as attending
daily coordination meetings.

 The team is essentially “flying blind” because they don’t
have any metrics to provide insights.

 Often results in leadership asking the team to put
together a regular (weekly) status report manually to get
the insight they require to monitor and guide the team.

Go-Forward Strategy

On a regular basis, our solution delivery team should make what is known as a “go-forward
decision” during Construction. Do we continue on as we have been, do we go in a different
direction, or do we do something else? In teams following one of the agile life cycles, this
typically occurs at the end of an iteration, whereas teams following a lean life cycle will make
this decision on an as-needed basis. As you can see in the following table, there are several
options to consider when making a go-forward decision.

Options (Not Ordered) Trade-Offs

Cancel. The stakeholders
decide to stop investing in
the endeavor.

 Canceling some efforts is a reflection that you’re taking on
some risks, which in competitive situations is something
you typically want to do. A very low cancellation rate may
be an indication that you’re not being aggressive enough.

 May be politically difficult in some organizations to cancel
an effort.

 Typically an option for project-based efforts. However, in
most cases it is far better to keep the team together and
pivot in a different direction.

Continue as before. The
stakeholders decide to
continue funding the team.

 Reflects the fact the team is doing a good job.

 Easy decision to make, so could be an indication there’s a
need for an explicit continued viability review if it has been
a long time between releases.

Deploy internally. The
stakeholders decide to have
the solution deployed
internally into an
environment that is not
production (such as testing
or demo environments).

 Opportunity to get feedback from stakeholders.

 Opportunity to learn how to deploy, thereby reducing risk,
and better yet to automate deployment to a greater extent.

Deploy into production. The
stakeholders decide to have
the team ship the working
solution into production.

 Opportunity to get feedback from actual end users.

 Opportunity to learn how to deploy into production
(hopefully you’ve had internal deployment experience
before this).

400

Increase funding. The
stakeholders decide to
increase their investment in
the team/product.

 Enables a team to increase or improve their output.

 Enables our organization to invest in teams that provide
good value.

 Assumes that the team can use more funding; this may not
always be the (immediate) case.

Reduce funding. The
stakeholders decide to
decrease their investment
in the team/product.

 Enables our organization to decrease investments in teams
struggling to provide good value.

 Sends a clear signal to a team that they need to improve
without resorting to cancellation.

 May result in some person(s) needing to leave the team, so
a strategy to help them find appropriate work somewhere
else may be needed. We will need to work with our people
management [AmblerLines2017] team for this.

Run an experiment. The
stakeholders decide to run
an experiment, perhaps an
A/B test or the release of a
minimal viable product
(MVP). This is effectively a
decision to apply the
Exploratory life cycle (see
Chapter 6).

 Reduces risk by gaining feedback in a relatively safe
environment.

 Opportunity to learn, and thereby improve.

 Some organizations are uncomfortable with the idea of
experimentation because some experiments “fail.” Get
over it.

Pivot. The stakeholders
decide to continue
investing in the team, but
want the team go in a
different direction [Ries].

 Keeps funding for an effective team even though they are
doing work that isn’t providing the value they originally
hoped for.

 Politically safe way to move away from an ineffective
strategy, particularly compared with cancelling as it avoids
the stigma of a project failure.

401

Milestone Review Strategy

As you learned in Chapter 6, the Disciplined Agile Delivery (DAD) life cycles have a collection
of risk-based milestones. These milestones are overviewed in Figure 27.4, are described in the
following table, and are an effective means for our team to provide transparency to our
stakeholders. An important aspect of these milestones is that they are applied consistently,
where appropriate, across all of the DAD life cycles. This has the advantage of enabling teams
to choose their way of working (WoW), including an appropriate life cycle, while enabling
leadership to govern them in a consistent manner. In other words, senior management doesn’t
have to enforce the same process on all teams to support their governance efforts.

Figure 27.4: The DAD milestones.

Milestone Fundamental
Question Asked

Risks Addressed

Stakeholder
vision

Do we have
agreement around
the direction that
we’re going?

 Ensure that the stakeholders agree with the strategy,
schedule, and finances associated with the
endeavor.

 Ensure that the team agrees to the strategy for
moving forward.

 Ensure that everyone understands their role and
responsibilities.

Proven
Architecture

Have we shown
that our strategy
works within our
operational
infrastructure?

 Ensures that the technical strategy works in the
organizational ecosystem while still meeting the key
quality requirements for it.

 Reduces stakeholder concern regarding the ability
of the team to fulfill the vision for the solution.

Continued
viability

Does this
endeavor still
make sense?

 Ensures that a team is still on track even though it
has been several months since their last release into
production.

 Shows that the product owner, who should be
leading stakeholders through a go-forward decision
on a regular basis, is actually doing so in practice.
This is effectively an explicit go-forward decision
point for a long-running project.

402

Milestone Fundamental
Question Asked

Risks Addressed

Sufficient
functionality

Do we have a
minimal
marketable release
(MMR)?

 Ensures that the team has produced a solution with
sufficient functionality, the value of which exceeds
the cost of deployment into production.

 Ensures that the solution is released into production
as soon as the sufficient functionality point is
reached.

Production
ready

Are we ready to
ship our solution
into production?

 Ensures that the solution is technically ready to be
shipped, including being adequately tested and
documented.

 Ensures that stakeholders are ready to receive the
solution.

 Ensures that the people responsible for operating
and supporting the solution, which may be the
delivery team itself, is ready to do so.

Delighted
stakeholders

Have we delighted
our stakeholders
with the current
release of our
solution?

 Identifies any potential issues with the solution so
that they may be swiftly addressed.

When people initially hear “milestone review,” they often think that it has to be heavy and
formal. As you can see in the following table, there are several options for holding milestone
reviews.

Options (Ordered) Trade-Offs

Automated review. Some of the
risks that milestone reviews would
look for in the past effectively
disappear as the result of increased
automation of the delivery pipeline,
including automated regression
tests, code/schema analysis tools,
continuous integration (CI), and
continuous deployment (CD). Many
risks can be automatically checked
for via application of data analytics
or artificial intelligence (AI) against
data generated by the team’s tools.
All of these techniques are aspects
of “infrastructure as code.”

 Decreases cost and overhead.

 Increases consistency of reviews.

 Supports separation of concerns (SoC) or
separation of duties (SoD) of some regulations
(e.g., PCI-DSS).

 Effective automation increases workflow of a team.

 Not everything can be automated, but a lot can,
enabling teams to focus on adding value.

 Requires investment and ongoing evolution.

403

Options (Ordered) Trade-Offs
Lightweight milestone reviews.
The review is very informal, with
minimal documentation produced
to support it. The review may even
be as simple as an impromptu
meeting with key stakeholders
[COBIT].

 Very likely supports our regulatory compliance
requirements, but work with the internal auditors
to verify this (we may need to educate them in DA
fundamentals first).

 Provides transparency to stakeholders and obtains
feedback from them.

 Low cost compared to formal reviews.

 Less stressful for the team and easier to accomplish
compared to formal reviews.

 Still requires time and effort to perform, albeit
much less than formal reviews.

Regular go-forward decision. A
very informal review, where
someone representing the
stakeholders determines how the
team will continue onward, if at all.
Likely options are described by the
Go-Forward Decision section
earlier. This review is typically held
by agile teams as part of their
iteration wrap-up or by lean teams
in an impromptu manner.

 Provides an ongoing, near-continuous viability
check on the team to ensure that we’re going in the
right direction.

 Increases the team’s transparency to stakeholders.

 The person making the decision, often the product
owner, needs to have the discipline to
dispassionately make this decision.

 Requires stakeholders to be responsible for steering
the team.

None. A review isn’t held. Effectively free.

 Doesn’t support regulatory compliance.

 We will still need to provide transparency.

 Still need to address the risks associated with the
milestones via other means.

Formal milestone reviews (quality
gates). A review meeting is planned
for in advance, (optionally)
facilitated, results of the review
documented, and any action items
are followed through on. Formal
milestone reviews are sometimes
used to validate comprehensive
documents or critical artifacts
[COBIT].

 Supports regulatory compliance needs, even life-
critical regulations.

 Expensive and stressful for the team.

 Often not very effective as it relies on very good,
diligent reviewers.

 Difficult to properly review large artifacts (most
people don’t want to read that much material).

 Time-consuming and often reduces team morale.

404

Demo Strategy

Demonstrations, colloquially called demos, of the current version of our solution are a great
way to both gain feedback from our stakeholders and provide transparency to them. Note
that we described the general trade-offs with demos earlier in the section describing the
Provide Transparency decision point. There are several approaches to holding demos, as you
can see in the following table.

Options (Not Ordered) Trade-Offs

All-hands demo. A demo where a
very wide range, potentially all,
stakeholders are invited to attend.

 Can be used to verify that the team is addressing
the full range of stakeholder needs (and how well
the product owner represents the stakeholders).

 Successful demos can reduce any fears that
stakeholders may have with our team.

 Failed demos can undermine trust in our team.

 Great way to get feedback from a wide range of
people.

 Many stakeholders do not have the time to attend,
so you may need to record them.

Impromptu demo. A demo held
on an as needed, just-in-time (JIT)
basis. Typically performed for a
small group of stakeholders.

 Satisfies as-needed requests by key stakeholders.

 Can get out of hand if done too often.

 Many requests to demo may be a sign that you need
regularly scheduled demos.

Scheduled (iteration/sprint)
demo. A regularly scheduled
demo, typically at the end of an
iteration, that is targeted to a
specific group of stakeholders.

 Sets expectations regarding when upcoming demos
will occur. This enables stakeholders to attend as
they can schedule around it.

 Sets a regular feedback and transparency cadence
with stakeholders.

Self-serve demo. Stakeholders are
provided access to an internal
demo version of our solution that
they may work with at their leisure.

 Enables stakeholders to work with the current
version of the system whenever they want.

 Requires an environment where people can safely
work with the solution that doesn’t affect
production (particularly data).

 Stakeholders need to be informed where it is and
need to understand that it’s not the production
system.

 Not a substitute for other forms of demos, but
complementary to them.

405

406

SECTION 6: PARTING THOUGHTS AND BACK MATTER

This section is organized into the following chapters:

 Chapter 28: Disciplined Success.

 Appendix – Disciplined Agile Certification.

 References

 Acronyms and Abbreviations

 Index

 About the Authors

407

28 DISCIPLINED SUCCESS

If you have read the entire book up to this point, congratulations. We appreciate that we have
covered a lot of ground. When we wrote our first book on DAD in 2012, we ended up with
a book of more than 500 pages, after having cut 200 pages of content. As we set out to write
this book as its replacement and removing materials related to agile “basics,” we had a goal of
making it smaller, and yet still ended up with over 400 pages. Yes, there is a lot to DAD. But
as Scott likes to say, “It is what it is.” Some people have called DAD “complicated” and have
been reluctant to make the investment to learn these strategies. This is unfortunate, as the
inconvenient truth is that effective delivery of IT solutions has never been simple and never
will be. DAD simply holds up a mirror to the inherent complexity that we face as software
professionals in enterprise-class settings. DAD is a very robust tool kit that addresses the
challenges you face in all aspects of delivering your solutions.

If You Are Doing Agile, You Are Already Using DAD

Scrum is a subset of two of DAD’s life cycles. So if you are just doing Scrum you are by
definition doing DAD. However, if Scrum is all that you are referencing, you are likely not
aware of some things you should be thinking about, or not using some supplemental practices
to help you be most effective. In our experience, if you are struggling to be effective with
agile, it may be that either you aren’t aware of strategies to help you, or are being given advice
by inexperienced, unknowledgeable, or purist agile coaches.

DAD Is Agile for the Enterprise

Unfortunately, our industry is full of “thought leaders” who believe that their way, often
because it is all that they understand, is the one true way. DAD is based upon empirical
observations from a vast array of industries, organizations, and all types of initiatives, both
project and product based, large and small. DAD’s inherent flexibility and adaptability is one
of the reasons it is such a useful tool kit. DAD just makes sense because it favors:

1. Pragmatic and agnostic over purist approaches;
2. Context-driven decisions over one-size-fits-all; and
3. Choice of strategies over prescriptive approaches.

If you are a “Scrum shop” you very likely are missing some great opportunities to optimize
your way of working. Scrum is actually a phenomenally bad life cycle to use in many situations
in most organizations, which is why we have a choice of other life cycle approaches in DAD.
If you rely solely on Scrum, or a Scrum-based scaling framework such as SAFe, Nexus, or
LeSS, we recommend you expand your tool kit with DAD to expose more suitable approaches
and practices.

Learn Faster to Succeed Earlier

Agile is fond of the phrase “fail fast,” meaning that the quicker we fail and learn from our
mistakes, the quicker we get to what we need. Our view is that by referencing proven context-
based strategies, we fail less and succeed earlier. In our daily work, we are continually making
decisions, which is why we call DA a process-decision tool kit. Without referencing the tool
kit to help with decision making, sometimes we either forget things we need to consider, or
make poor decisions on those we do. DAD surfaces decision points for discussion, making
the implicit, explicit. For instance, when beginning an initiative in Inception and referring to
the “Develop Test Strategy” goal diagram, it is like a coach tapping you on the shoulder and

408

asking: “How will we test this thing?”; “What environments do we need?”; ”Where will we
get the data?”; ”What tools?”; “How much is automated versus manual?”; and “Do we test
first or test after?” By surfacing these critical decisions for explicit consideration by your team,
we reduce the risk of forgetting things, and increase your chance of choosing a strategy that
works well for you. We call this guided continuous improvement (GCI).

Use This Book!

Keep this book handy. In practice, we regularly reference goal diagrams in our coaching to
point out why certain practices are less effective than others in certain situations, and what
alternatives we should consider. Take this book to your retrospectives, and if your team is
struggling with effectively meeting a DAD goal, review which options and tools you can
experiment with to remedy the situation. If you are a coach, this book should make you more
effective with helping teams to understand the choices and the trade-offs that they have
available to them.

Invest in Certification to Retain Your New Knowledge

We are sure that you have learned about new techniques in this book that will make you a
better agile practitioner, increasing your chances of success on your initiatives. The key is to
not let these new ideas fade from memory. We encourage you to cement this new knowledge
by studying the content to prepare and take the certification tests. The tests are difficult, but
passing them results in a worthwhile and credible certification truly worthy of updating your
LinkedIn profile. Companies that we have worked with have observed that their teams that
have made the investment in learning and certification make better decisions and are thus
more effective than teams that don’t understand their options and trade-offs. Better decisions
lead to better outcomes.

Make the investment in learning this material and proving it through certification. You will be
a better agilist, and those around you will notice.

Please Get Involved

We also suggest that you participate in the Disciplined Agile community. New ideas and
practices emerge from the community and are continually incorporated into DA. Let’s learn
from each other as we all seek to continue to learn and master our craft.

409

APPENDIX A – DISCIPLINED AGILE CERTIFICATION

The Disciplined Agile certification strategy is based on the martial arts concept of Shu-Ha-Ri,
where Shu is beginner level, Ha is intermediate level, and Ri is expert level. It takes several
years of experience and learning, not several days of workshops, for someone to move
between levels.

410

Why Disciplined Agile Certification?

For individuals, there are several benefits:
1. Increase your knowledge. Disciplined Agile certification requires you to have a

comprehensive understanding of Disciplined Agile Delivery, which in turn
describes how all aspects of agile principles and practices fit together in an
enterprise-class environment.

2. Improve your employability. Disciplined Agile certification indicates to
employers that you’re dedicated to improving your knowledge and skills, a clear
sign of professionalism.

3. Advance your career. Disciplined Agile certification can help you gain that new
position or role as the result of your increased knowledge base and desire to
improve.

For organizations, there are several benefits:

1. It is meaningful. Disciplined Agile certification has to be earned. It is an indication
that your people have a comprehensive understanding of enterprise-class
development.

2. It forms the basis of measurable skills assessment. Because the certifications
build upon each other, you can use them as a measure of how well agile skills and
knowledge are spreading through your organization.

3. It is trustworthy. Because Disciplined Agile certification is externally managed, it is
difficult for teams to game the numbers, unlike the self-assessment approach that is
becoming all too common.

In summary, we believe that there is value in certification for both individual IT
practitioners and for organizations.

411

The Principles Behind Disciplined Agile Certification

The following principles drove the development of this certification program:
1. Certifications must provide value. First and foremost, a certification must provide

value to the person being certified. This value comes from learning new and valuable
strategies during the process of earning the certification as well as greater
employability resulting from the certification. Of course, there are always limits.

2. Certifications must be earned. The effort required to earn the certification must be
commensurate with the value provided. For example, it is easy to earn and become a
Certified Disciplined Agilist because this is an indication that someone has basic
knowledge of Disciplined Agile and wishes to learn more. A Certified Disciplined
Agile Practitioner is harder to earn because it is an indication of both knowledge and
experience. It is very difficult to earn and become a Certified Disciplined Agile Coach
because it’s an indication of expertise and competence.

3. Certifications must be respectable. We believe that the Disciplined Agile
certifications are respectable for several reasons. First, the fact that you have to do
some work to earn them is a welcome difference from other agile certifications.
Second, we’re aligning with other respectable certification programs and are
requesting participation in one or more of those programs as part of the Practitioner
and Coach certifications.

4. Certifications must be focused. The focus of this program is on disciplined agile
approaches to IT solution delivery. Disciplined agile certifications are an indication
of knowledge and experience in disciplined agile methods.

5. Certification is part of your learning process. Disciplined professionals view
certification as part of their learning process. Learning is not an event but instead an
ongoing effort. The implication is that once you have earned your certification you
must continue working to keep your skills up to date.

6. Certified professionals have a responsibility to share knowledge. Not only have
we adopted the concept of earning belts from martial arts, we have also adopted the
mindset that people have a responsibility to help teach and nurture people with lower
belts to learn new skills and knowledge. The act of teaching and sharing information
often leads one to a greater understanding and appreciation of the topic, and thus
helps the teacher as well as the student to learn.

How to Learn More

You can find out more about the certification process at DisciplinedAgileConsortium.org.

http://disciplinedagileconsortium.org/

413

REFERENCES

[Adkins] Coaching Agile Teams: A Companion for ScrumMasters, Agile Coaches, and Project Managers
in Transition. Lyssa Adkins, 2010, Addison Wesley.
[AgileContracts] Agile Contracts Home Page. AgileContracts.org
[AgileData] Agile Data Home Page. AgileData.org
[AgileDocumentation] Agile/Lean Documentation: Strategies for Agile Software Development.
AgileModeling.com/essays/agileDocumentation.htm
[AgileModeling] Agile Modeling Home Page. AgileModeling.com
[AmblerLines2012] Disciplined Agile Delivery: A Practitioner's Guide to Agile Software Delivery in the
Enterprise. Scott Ambler and Mark Lines, 2012, IBM Press.
[AmblerLines2017] An Executive’s Guide to Disciplined Agile: Winning the Race to Business Agility.
Scott Ambler and Mark Lines, 2017, Disciplined Agile Consortium.
[Anderson] Kanban: Successful Evolutionary Change for Your Technology Business. David J. Anderson,
2010, Blue Hole Press.
[AoS2016]. 2016 Agility at Scale Survey Results. Ambysoft.com/surveys/agileAtScale2016.html
[Appelo2010] Management 3.0: Leading Agile Developers, Developing Agile Leaders. Jurgen Appelo,
2010, Addison-Wesley Professional.
[Appelo2016] Managing for Happiness: Games, Tools, and Practices to Motivate Any Team. Jurgen
Appelo, 2016, Wiley.
[APIFirst] API-First Home Page. Api-first.com
[Argyris] Double Loop Learning in Organizations. Chris Argyris, Harvard Business Review,
September 1977. hbr.org/1977/09/double-loop-learning-in-organizations
[Beck] Extreme Programming Explained: Embrace Change (2nd Edition). Kent Beck & Cynthia
Andres, 2004, Addison-Wesley Publishing.
[BeyondManifesto]. Beyond Agile Manifesto. http://42ndstreetcompany.com/becks-beyond-
agile-manifesto/
[Brooks] The Mythical Man-Month, 25th Anniversary Edition. Frederick P. Brooks Jr., 1995,
Addison-Wesley.
[BRUF] Examining the “Big Requirements Up Front (BRUF) Approach.”
AgileModeling.com/essays/examiningBRUF.htm
[BurnUp] Burn up vs. burn down chart.
ClariosTechnology.com/productivity/blog/burnupvsburndownchart
[C2Wiki] C2 Wiki. wiki.c2.com
[CapabilityMap] A Guide to the Business Architecture Book of Knowledge.
BusinessArchitectureGuild.org/page/BIZBOKLandingpage
[ChaosReport] Standish Group Chaos Report. StandishGroup.com/outline
[CM] Configuration Management Best Practices: Practical Methods That Work in the Real World. Bob
Aiello & Leslie Sachs, 2010, Addison-Wesley Professional.
[CMMI] The Disciplined Agile Framework: A Pragmatic Approach to Agile Maturity.
DisciplinedAgileConsortium.org/resources/Whitepapers/DA-CMMI-Crosstalk-201607.pdf
[COBIT] COBIT 5 Home Page. isaca.org/COBIT/pages/default.aspx
[CockburnAgile] Agile Software Development: The Cooperative Game 2nd Edition. Alistair Cockburn,
2006, Addison-Wesley.
[CockburnHeart] Heart of Agile Home Page. HeartOfAgile.com/
[Communication] Communication on Agile Software Development Teams.
AgileModeling.com/essays/communication.htm
[Cohn] Agile Estimating and Planning. Mike Cohn, 2005, Addison-Wesley.

http://agilecontracts.org/
http://agiledata.org/
http://agilemodeling.com/essays/agileDocumentation.htm
http://agilemodeling.com/
http://www.ambysoft.com/surveys/agileAtScale2016.html
http://www.api-first.com/
https://hbr.org/1977/09/double-loop-learning-in-organizations
http://www.agilemodeling.com/essays/examiningBRUF.htm
http://www.clariostechnology.com/productivity/blog/burnupvsburndownchart
http://wiki.c2.com/
https://www.businessarchitectureguild.org/page/BIZBOKLandingpage
http://www.standishgroup.com/outline
https://www.disciplinedagileconsortium.org/resources/Whitepapers/DA-CMMI-Crosstalk-201607.pdf
https://www.isaca.org/COBIT/pages/default.aspx
http://heartofagile.com/
http://agilemodeling.com/essays/communication.htm

414

[Covey] The 7 Habits of Highly Effective People: Powerful Lessons in Personal Change – 25th Anniversary
Edition. Stephen R. Covey 2013, Simon & Schuster.
[Cynefin] A Leader’s Framework for Decision Making. David J. Snowden & Mary E. Boone,
Harvard Business Review, November 2007. hbr.org/2007/11/a-leaders-framework-for-
decision-making
[DABlog] Disciplined Agile Delivery Home Page. DisciplinedAgileDelivery.com
[DAC] Disciplined Agile Consortium Home Page. DisciplinedAgileConsortium.org
[DADRoles] Roles on DAD Teams. http://DisciplinedAgileDelivery.com/roles-on-dad-
teams/
[DAMA] DAMA Guide to the Data Management Body of Knowledge. Technicspub.com/dmbok/
[DBRefactoring] Refactoring Databases: Evolutionary Database Design. Scott W. Ambler & Pramod
J. Sadalage, 2006, Addison-Wesley.
[DDD]. Domain Driven Design: Tackling Complexity in the Heart of Software. Eric Evans, 2003,
Addison-Wesley Professional.
[DeMarco] Slack: Getting Past Burnout, Busywork, and the Myth of Total Efficiency. Tom DeMarco,
2002, Crown Business.
[Deming] The New Economics for Industry, Government, Education. W. Edwards Deming, 2002,
MIT Press.
[Denning] The Agile of Agile: How Smart Companies Are Transforming the Way Work Gets Done.
Stephen Denning, 2018, New York, NY: AMACON.
[DevSecOps] The DevSecOps Manifesto. DevSecOps.org
[Essence] The Essentials of Modern Software Engineering: Free the Practices From the Method Prisons!
Ivar Jacobson, Harold “Bud” Lawson, Pan-Wei Ng, Paul E. McMahon, & Michael Goedicke.
2019, Morgan & Claypool.
[Estimation] 3 Powerful Estimation Techniques for Agile Teams. David Green, SitePoint.com/3-
powerful-estimation-techniques-for-agile-teams/
[ExecutableSpecs] Specification by Example: How Successful Teams Deliver the Right Software. Gojko
Adzic, 2011, Manning Press.
[EventStorming]. Introducing Event Storming. Alberto Brandolini.
ziobrando.blogspot.com/2013/11/introducing-event-storming.html
[Fowler] The State of Agile Software in 2018. Martin Fowler, MartinFowler.com/articles/agile-
aus-2018.html
[Gagnon] A Retrospective on Years of Process Tailoring Workshops. Daniel Gagnon, 2018,
DisciplinedAgileDelivery.com/a-retrospective-on-years-of-process-tailoring-workshops/
[GenSpec] Generalizing Specialists: Improving Your IT Career Skills.
AgileModeling.com/essays/generalizingSpecialists.htm
[Gilb] Competitive Engineering: A Handbook for Systems Engineering, Requirements Engineering, and
Software Engineering Using Planguage. Tom Gilb, 2005, Butterworth-Heinemann.
[Goals] Process Goals. DisciplinedAgileDelivery.com/process-goals/
[Goldratt] The Goal: A Process of Ongoing Improvement—3rd Revised Edition. Eli Goldratt, 2004,
Great Barrington, MA: North River Press.
[Google] Five Keys to a Successful Google Team. Julia Rozovsky, n.d.,
https://rework.withgoogle.com/blog/five-keys-to-a-successful-google-team/
[GregoryCrispin] Agile Testing: A Practical Guide for Testers and Agile Teams. Janet Gregory & Lisa
Crispin, 2009, Addison Wesley.
[Highsmith] Agile Software Development Ecosystems. Jim Highsmith, 2002, Addison-Wesley.
[HopeFraser] Beyond Budgeting: How Managers Can Break Free From the Annual Performance Trap.
Jeremy Hope & Robin Fraser, 2003, Harvard Business Press.
[Host] The Host Leadership Community. HostLeadership.com

https://hbr.org/2007/11/a-leaders-framework-for-decision-making
https://hbr.org/2007/11/a-leaders-framework-for-decision-making
http://disciplinedagiledelivery.com/
http://disciplinedagileconsortium.org/
http://disciplinedagiledelivery.com/roles-on-dad-teams/
http://disciplinedagiledelivery.com/roles-on-dad-teams/
https://technicspub.com/dmbok/
http://devsecops.org/
https://www.sitepoint.com/3-powerful-estimation-techniques-for-agile-teams/
https://www.sitepoint.com/3-powerful-estimation-techniques-for-agile-teams/
https://ziobrando.blogspot.com/2013/11/introducing-event-storming.html
https://martinfowler.com/articles/agile-aus-2018.html
https://martinfowler.com/articles/agile-aus-2018.html
http://www.disciplinedagiledelivery.com/a-retrospective-on-years-of-process-tailoring-workshops/
http://www.agilemodeling.com/essays/generalizingSpecialists.htm
http://disciplinedagiledelivery.com/process-goals/
https://rework.withgoogle.com/blog/five-keys-to-a-successful-google-team/
http://hostleadership.com/

415

[ImpactMap] The Impact Mapping Site. ImpactMapping.org
[ITGovernance] IT Governance. DisciplinedAgileDelivery.com/agility-at-scale/it-governance/
[Kim]. DevOps Cookbook. RealGeneKim.me/devops-cookbook/
[Kerievsky] Modern Agile. ModernAgile.org/
[Kersten] Project to Product: How to Survive and Thrive in the Age of Digital Disruption With the Flow
Framework. Mik Kersten, 2018, Portland, OR: IT Revolution Press.
[Kerth] Project Retrospectives: A Handbook for Team Reviews. Norm Kerth, 2001, Dorset House.
[Kotter] Accelerate: Building Strategic Agility for a Faster Moving World. John P. Kotter, 2014,
Brighton, MA: Harvard Business Review Press.
[Kruchten] The Rational Unified Process: An Introduction 3rd Edition. Philippe Kruchten, 2003,
Addison-Wesley Professional.
[LargeTeams] Large Agile Teams. DisciplinedAgileDelivery.com/agility-at-scale/large-agile-
teams/
[LeanChange1] The Lean Change Method: Managing Agile Organizational Transformation Using
Kanban, Kotter, and Lean Startup Thinking. Jeff Anderson, 2013, Createspace.
[LeanChange2] Lean Change Management home page. LeanChange.org

[LeanEnterprise] Lean Enterprise: How High Performance Organizations Innovate at Scale. Jez
Humble, Joanne Molesky, & Barry O’Reilly, 2015, O’Reilly Media, Inc.
[LeSS] The LeSS Framework. LeSS.works
[Life Cycles] Full Agile Delivery Life cycles. DisciplinedAgileDelivery.com/life cycle/
[Liker] The Toyota Way: 14 Management Principles from the World’s Greatest Manufacturer. Jeffery K.
Liker, 2004, New York, NY: McGraw-Hill.
[LinesAmbler2018] Introduction to Disciplined Agile Delivery 2nd Edition: A Small Agile Team’s
Journey from Scrum to Disciplined DevOps. Mark Lines & Scott Ambler, 2018, Disciplined Agile
Consortium.
[Manifesto] The Agile Manifesto. AgileManifesto.org
[Marick] Agile Testing Directions: Tests and Examples. Exampler.com/old-
blog/2003/08/22/#agile-testing-project-2
[MarketingManifesto] Agile Marketing Manifesto home page. AgileMarketingManifesto.org/
[MartinOsterling] Value Stream Mapping: How to Visualize Work and Align Leadership for
Organizational Transformation. Karen Martin and Mike Osterling, 2015, McGraw Hill.
[MCSF] Team of Teams: New Rules of Engagement for a Complex World. S. McChrystal, T. Collins,
D. Silverman, & C. Fussel, 2015, New York, NY: Portfolio.
[Meadows] Thinking in Systems: A Primer. Daniella H. Meadows, 2015, White River Junction,
VT: Chelsea Green Publishing.
[NoEstimates] The #NoEstimates Debate: An Unbiased Look at the Origins, Arguments, and Thought
Leaders Behind the Movement. TechBeacon.com/noestimates-debate-unbiased-look-origins-
arguments-thought-leaders-behind-movement
[Nonaka] Toward Middle-Up-Down Management: Accelerating Information Creation. Ikujiro Nonaka,
1988, https://sloanreview.mit.edu/article/toward-middleupdown-management-accelerating-
information-creation/
[NoProjects] #NoProjects – A Culture of Continuous Value. Evan Leybourn & Shane Hastie, 2018,
C4Media.
[Nexus] The Nexus Guide. Scrum.org/resources/nexus-guide
[ObjectPrimer] The Object Primer – 3rd Edition: Agile Model Driven Development With UML 2. Scott
Ambler, 2004, Cambridge University Press.
[Patton] User Story Mapping: Discover the Whole Story, Get the Product Right. Jeff Patton, 2014,
O’Reilly Media.

http://impactmapping.org/
http://disciplinedagiledelivery.com/agility-at-scale/it-governance/
http://www.realgenekim.me/devops-cookbook/
http://modernagile.org/
http://www.disciplinedagiledelivery.com/agility-at-scale/large-agile-teams/
http://www.disciplinedagiledelivery.com/agility-at-scale/large-agile-teams/
http://leanchange.org/
https://less.works/
http://www.disciplinedagiledelivery.com/lifecycle/
http://agilemanifesto.org/
http://www.exampler.com/old-blog/2003/08/22/#agile-testing-project-2
http://www.exampler.com/old-blog/2003/08/22/#agile-testing-project-2
http://agilemarketingmanifesto.org/
https://techbeacon.com/noestimates-debate-unbiased-look-origins-arguments-thought-leaders-behind-movement
https://techbeacon.com/noestimates-debate-unbiased-look-origins-arguments-thought-leaders-behind-movement
https://sloanreview.mit.edu/article/toward-middleupdown-management-accelerating-information-creation/
https://sloanreview.mit.edu/article/toward-middleupdown-management-accelerating-information-creation/
https://www.scrum.org/resources/nexus-guide

416

[Pink] Drive: The Surprising Truth About What Motivates Us. Daniel H. Pink, 2011, Riverhead
Books.
[PIT] Parallel Independent Testing. DisciplinedAgileDelivery.com/independent-testing/
[PMI] A Guide to the Project Management Body of Knowledge (PMBOK® Guide) – Sixth edition.
Project Management Institute, 2017, Author. pmi.org/pmbok-guide-standards
[Poppendieck] The Lean Mindset: Ask the Right Questions. Mary Poppendieck & Tom
Poppendieck, 2013, Addison-Wesley Professional.
[Powers] Powers’ Definition of the Agile Mindset.
AdventuresWithAgile.com/consultancy/powers-definition-agile-mind-set/
[Prince] Prince2. Axelos.com/best-practice-solutions/prince2
[Prison] Tear Down the Method Prisons! Set Free the Practices! I. Jacobson & R. Stimson,
ACM Queue, January/February 2019.
[RaceCar] The Race Car Metaphor. DisciplinedAgileDelivery.com/the-agile-tractor-engine-
analogy/
[Ranged] Ranged Burndown Charts. DisciplinedAgileDelivery.com/ranged-burndown-charts/
[Refactoring] Refactoring: Improving the Design of Existing Code – 2nd Edition. Martin Fowler, 2018,
Addison-Wesley.
[Reifer] Quantitative Analysis of Agile Methods Study (2017): Twelve Major Findings. Donald J. Reifer,
2017, InfoQ.com/articles/reifer-agile-study-2017
[Reinertsen] The Principles of Product Development Flow: Second Generation Lean Product Development.
Donald G. Reinertsen, 2012, Celeritis Publishing.
[Resources]. The Disciplined Agile Resources Page. DisciplinedAgileConsortium.org/Disciplined-
Agile-Resources
[Reuse] Reuse Engineering. DisciplinedAgileDelivery.com/agility-at-scale/reuse-
engineering/[Ries] The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create
Radically Successful Businesses. Eric Ries, 2011, Crown Business.
[RightsResponsibilities] Team Member Rights and Responsibilities.
DisciplinedAgileDelivery.com/people/rights-and-responsibilities/
[Rubin] Essential Scrum: A Practical Guide to the Most Popular Process. Ken Rubin, 2012, Addison-
Wesley Professional.
[Rugged] The Rugged Manifesto. RuggedSoftware.org
[SAFe] SAFe 4.5 Distilled: Applying the Scaled Agile Framework for Lean Enterprises (2nd Edition).
Richard Knaster and Dean Leffingwell, 2018, Addison-Wesley Professional.
[SchwaberBeedle] Agile Software Development With SCRUM. Ken Schwaber & Mike Beedle,
2001, Pearson.
[Schwartz] The Art of Business Value. Mark Schwartz, 2016, Portland, OR: IT Revolution Press.
[ScrumGuide] The Scrum Guide. Jeff Sutherland & Ken Schwaber, 2018,
Scrum.org/resources/scrum-guide
[SDCF] Scaling Agile: The Software Development Context Framework.
DisciplinedAgileDelivery.com/sdcf/
[SenseRespond] Sense & Respond: How Successful Organizations Listen to Customers and Create New
Products Continuously. Jeff Gothelf & Josh Seiden, 2017, Harvard Business Review Press.
[Sheridan] Joy, Inc.: How We Built a Workplace People Love. Richard Sheridan, 2014, Portfolio
Publishing.
[SoftDev18] 2018 Software Development Survey Results.
Ambysoft.com/surveys/softwareDevelopment2018.html
[Sutherland] Scrum: The Art of Doing Twice the Work in Half the Time. Jeff Sutherland & J. J.
Sutherland, 2014, Currency.

http://www.disciplinedagiledelivery.com/independent-testing/
https://www.pmi.org/pmbok-guide-standards
https://www.adventureswithagile.com/consultancy/powers-definition-agile-mind-set/
https://www.axelos.com/best-practice-solutions/prince2
https://disciplinedagiledelivery.com/the-agile-tractor-engine-analogy/
https://disciplinedagiledelivery.com/the-agile-tractor-engine-analogy/
http://www.disciplinedagiledelivery.com/ranged-burndown-charts/
https://www.infoq.com/articles/reifer-agile-study-2017
https://disciplinedagileconsortium.org/Disciplined-Agile-Resources
https://disciplinedagileconsortium.org/Disciplined-Agile-Resources
http://disciplinedagiledelivery.com/agility-at-scale/reuse-engineering/
http://disciplinedagiledelivery.com/agility-at-scale/reuse-engineering/
http://www.disciplinedagiledelivery.com/people/rights-and-responsibilities/
http://ruggedsoftware.org/
https://www.scrum.org/resources/scrum-guide
https://www.disciplinedagiledelivery.com/sdcf/
http://www.ambysoft.com/surveys/softwareDevelopment2018.html

417

[Tailoring] Process Tailoring Workshops. DisciplinedAgileDelivery.com/process/process-
tailoring-workshops/
[Target] Target Customers' Card Data Said to Be at Risk After Store Thefts.
csoonline.com/article/2134248/data-protection/target-customers--39--card-data-said-to-be-
at-risk-after-store-thefts.html
[TechDebt] 11 Strategies for Dealing With Technical Debt.
DisciplinedAgileDelivery.com/technical-debt/
[Tuckman] Tuckman’s Stages of Group Development.
en.wikipedia.org/wiki/Tuckman%27s_stages_of_group_development
[ValueProposition] Value Proposition Design: How to Create Products and Services Customers Want. A.
Osterwalder, Y. Pigneur, G. Bernarda, & A. Smith, 2014, John Wiley & Sons.
[WomackJones] Lean Thinking: Banish Waste and Create Wealth in Your Corporation. James P.
Womack & Daniel T. Jones, 1996, New York, NY: Simon & Schuster.

ADDITIONAL RESOURCES

[W] Wikipedia. Wikipedia.org

http://www.disciplinedagiledelivery.com/process/process-tailoring-workshops/
http://www.disciplinedagiledelivery.com/process/process-tailoring-workshops/
http://www.csoonline.com/article/2134248/data-protection/target-customers--39--card-data-said-to-be-at-risk-after-store-thefts.html
http://www.csoonline.com/article/2134248/data-protection/target-customers--39--card-data-said-to-be-at-risk-after-store-thefts.html
http://www.disciplinedagiledelivery.com/technical-debt/
https://en.wikipedia.org/wiki/Tuckman%27s_stages_of_group_development
http://wikipedia.org/

418

ACRONYMS AND ABBREVIATIONS

AD Agile data
AI Artificial intelligence
AIC Agile industrial complex
AINO Agile in name only
AM Agile Modeling
AO Architecture owner
API Application programming interface
ART Agile release train
ATDD Acceptance test-driven development
BA Business analyst
BI Business intelligence
BDD Behavior-driven development
BDUF Big design up front
BMUF Big modeling up front
BoK Body of knowledge or book of knowledge
BPMN Business process modeling notation
BRUF Big requirements up front
BSA Business system analyst
C&C Command and control
CapEx Capital expense
CAS Complex adaptive system
CASE Computer-aided software engineering
CBT Computer-based training
CCB Change control board
CD Continuous deployment
CDA Certified Disciplined Agilist
CDAC Certified Disciplined Agile Coach
CDAI Certified Disciplined Agile Instructor
CDAP Certified Disciplined Agile Practitioner
CI Continuous integration or continuous improvement
CM Configuration management
CMMI Capability Maturity Model Integration
COBIT Control Objectives for Information and Related Technologies
CoE Center of expertise/excellence
CoP Community of practice
COTS Commercial off the shelf
CRUFT Correct-read-understood-followed-trusted
DA Disciplined Agile
DAE Disciplined Agile Enterprise
DAMA Data Management Association
DBA Database administrator
DDD Domain-driven design
DevOps Development-Operations
DoD Definition of done

419

DoR Definition of ready
DW Data warehouse
EA Enterprise architect or enterprise architecture
FASB Financial Accounting Standards Board
FT Functional testing
FTE Full-time employee
GCI Guided continuous improvement
GERT Graphical evaluation and review technique
GQM Goal question metric
HIPAA Health Insurance Portability and Accountability Act
HR Human resources
IASA International Association of Software Architects
IDE Integrated development environment
IR4 Industrial Revolution 4.0
ISO International Organization for Standardization
IT Information technology
ITIL Information Technology Infrastructure Library
JAD Joint application design
JAR Joint application requirement
JBGE Just barely good enough
JIT Just in time
KM Knowledge management
KPI Key performance indicator
LOB Line of business
MDD Model-driven development
MMF Minimal marketable feature
MMP Minimal marketable product
MMR Minimal marketable release
MRT Media richness theory
MTBD Mean time between deployments
MVC Minimal viable change
MVP Minimal viable product
NFR Nonfunctional requirement
NPS Net promoter score
OKR Objectives and key results
OMG Object management group
OODA Observe-orient-decide-act
OpEx Operating expense
Ops Operations
OST Open space technology
PDCA Plan-do-check-act
PDSA Plan-do-study-act
PERT Program evaluation review technique
PI Program increment
PIT Parallel independent test
PITT Parallel independent test team
PM Project manager
PMI Project Management Institute
PMO Project management office

420

PO Product owner
PoC Proof of concept
PSCA Plan-study-check-act
QA Quality assurance
QoS Quality of service
ROI Return on investment
RUP Rational unified process
SAFe Scaled Agile Framework
SDCF Software Development Context Framework
SDLC System/software/solution delivery life cycle
SEMAT Software Engineering Method and Theory
SIT System integration test(ing)
SLA Service-level agreement
SME Subject matter expert
SoC Separation of concerns
SoD Separation of duties
SoR Source of record
SoS Scrum of scrums
SRS Software requirements specification
TDD Test-driven development
TFD Test-first development
TFP Test-first programming
TFS Team foundation server
ToC Theory of constraints
UAT User acceptance test(ing)
UI User interface
UML Unified modeling language
UP Unified process
UT Unit testing
UEX User experience
UX User experience
V&V Verification and validation
VOIP Voice-over internet protocol
VSM Value stream map(ping)
WIP Work in process
XP Extreme Programming

421

INDEX

#NoEstimates, 41, 172

#NoFrameworks, 41

#NoProjects, 41

#NoTemplates, 41, 262

360-degreee review, 310

5 why analysis, 42

A/B testing. See split testing

accelerate value delivery

automate infrastructure, 271

choose a deployment strategy, 267

choose an SCM branching strategy, 274

choose testing strategies, 276

choose testing types, 279

goal diagram, 266

maintain traceability, 287

manage assets, 274

plan deployment, 270

verify quality of work, 286

accelerate value realization, 34

acceptance criteria, 144

accessibility, 190

testing, 192

accessibility testing, 280

active stakeholder participation, 68

effectiveness, 237

in deployment planning, 270

in deployment testing, 300

requirements, 246

requirements prioritization, 232

writing documentation, 253

activity diagram, 140

address changing stakeholder needs

accept changes, 236

elicit requirements, 239

manage work items, 229

prioritize work (how), 231

prioritize work (what), 234

prioritize work (who), 232

stakeholder interaction with team, 237

address risk

address a risk, 373

choose risk strategy, 368

classify risks, 372

document a risk, 374

explore risks, 369

goal diagram, 367

monitor risks, 376

track risks, 374

adopt measures to improve outcomes, 40

Adzic, Gojko, 261

agile

ceremonies, 88

agile adoption

improvement statistics, 12

agile coach, 312

as team lead, 63

certification, 55

embedded, 306

office hours, 306

support, 19

Agile Data, 384

agile industrial complex, 4

agile life cycle, 87, 345

Agile Modeling, 45, 75, 90

architecture envisioning, 153

design, 249

documentation, 147

requirements, 246

room, 338

session, 145, 155, 320

agile testing quadrants, 193, 280

agility at scale, 53

agnostic process advice, 7, 13, 30, 352

Aiello, Bob, 274

align with enterprise direction

adopt common guidelines, 129

adopt common templates, 130

align with governance strategies, 132

422

align with roadmaps, 128

goal diagram, 128

reuse existing infrastructure, 131

all-hands demos, 403

alpha testing, 192, 280, 292

ambassador, 331

annual review, 310

apply design thinking, 38

architectural stack diagram, 157

architecture

and working code, 225

candidate architecture, 153

envisioning, 153

evolutionary, 149

governance, 133, 223

guidelines, 129

JAD session, 155

modeling, 153

review, 226

risk, 369

roadmap, 327

spike, 225, 249

technology roadmap, 128

views and concerns, 198, 225, 286

architecture owner, 232

and enterprise architecture, 65

definition, 65

proven architecture, 103

tailoring options, 68

team, 322

working with product owner, 65

working with team members, 62

attend to relationships through the value

stream, 38

autocratic leadership, 390

automated dashboards, 360

and governance, 392

automated regression tests, 200

automation, 271

and continuous delivery, 90

of deployment, 296

of metrics, 40, 396

of reviews, 401

autonomy, 305

average cost of change curve, 182, 268

awesome teams, 38

backlog refinement. See look-ahead

modeling

bake-off, 225

batches

and agile, 88

and lean, 92

BDUF, 162

be agile, 43

be awesome, 25

be pragmatic, 28

behavior-driven development, 245, 246,

276

best practice, 352

beta testing, 192, 280, 292

big requirements up front, 148

big room planning, 90, 246, 249, 320

black-box testing, 186

blue/green release, 296

Boehm, Barry, 179, 267

book club, 306

bottlenecks, 31

boundary spanner, 331

BPMN, 140

branching strategy, 274

branding guidelines, 129

budget, 64

build quality in, 23, 179, 265

Burch, Noel, 306

business analyst, 232

and agile, 69

effectiveness, 237

business architecture, 158

business canvas, 209

business case, 209

business critical, 187

business process diagram, 140, 158, 348

business roadmap, 128, 327

business rule, 142

cadences

common, 322

divisor, 322

of ceremonies, 88

423

of iterations, 170, 327

of reviews, 376

release, 98, 106, 170, 267, 296

test suites, 198

canary release, 296

canary testing, 192

cancel a project, 398

candidate architecture, 153

capability map, 158

capacity, 36

caves and commons, 338

center of excellence, 306

ceremonies, 88

change control board, 232

effectiveness, 237

change culture by improving the system,

39

charter, 209

choice is good, 28, 55

life cycles, 51, 83, 289

process goals, 49

CI/CD pipeline, 271

class diagram, 139

clear-box testing, 186

cloud architecture diagram, 157

CMMI, 54

coaching, 105, 125, 312

Cockburn, Alistair, 24

code

analysis, 204

guidelines, 129

refactoring, 258

reuse, 131

cold switchover, 296

collaborate proactively, 34

collaboration

styles, 343

tools, 331

with enterprise teams, 327

collective ownership, 318

colocated team, 121

communication strategies, 341

comparison, 120

effectiveness, 237

community of practice, 9

community of practice, 306, 358

complex adaptive system, 9, 386

complexity, 28

of process, 77

component diagram, 157, 158

component team, 97

component teams, 117

component testing, 280

concept phase, 83, 137

conceptual model, 139, 158

configuration management, 274, 360

branching strategies, 274

confirmatory testing, 186

construction phase, 83

agile life cycle, 88

process goals, 221

consumability, 254

consumable

definition, 52

consumable solution, 46, 55, 241

context counts, 26, 46, 55

and complexity, 28

governance, 386

context diagram, 142

context factors, 26, 420

continued viability, 104

continued viability milestone, 398, 400

continuous batches, 296

continuous delivery

and scheduling, 168

continuous delivery agile life cycle, 90,

345

continuous delivery lean life cycle, 94,

345

continuous deployment, 200, 267, 296,

330

internal, 267

planning, 270

process, 272

continuous documentation, 253

continuous improvement, 13, 355

continuous integration, 200, 204, 276

process, 271

contract, 211

controlled experiment, 13, 355

424

coordinate activities

artifact ownership, 318

coordinate across organization, 327

coordinate across program, 322

coordinate between locations, 331

coordinate release schedule, 330

coordinate within team, 318

facilitate a working session, 320

goal diagram, 316

share information, 317

coordination

with a program, 97

coordination meeting, 243, 318, 322

cost of delay, 30, 231

cost-driven schedule, 168

cosumable solution, 31

COTS

configuration, 152

extension, 152

create effective environments that foster

joy, 38

create knowledge, 23

create psychological safety and embrace

diversity, 33

create semi-autonomous self-organizing

teams, 39

Crispin, Lisa, 279

critical thinking, 12, 355

CRUFT formula, 252, 357

cubicles, 338

culture

personal safety, 26

culture change, 39, 57

dark release, 296

data

backup, 299

governance, 133

guidelines, 129

legacy, 384

legacy analysis, 160

logical data model, 139

migration, 292

restore, 299

reuse, 131, 263

schema analysis, 204

test data, 199

data flow diagram, 140, 158

database

consolidation, 384

refactoring, 384

static analysis, 286

testing, 192, 280

database refactoring, 258

date-driven schedule, 168

decision points, 71

ordered, 75, 79

unordered, 75

dedicated teams, 31, 32

dedicated workroom, 338

deferred decisions, 241

definition of done, 18, 286

and governance, 392

definition of ready, 18, 246

and governance, 392

delight customers, 25

delighted stakeholders, 105

delighted stakeholders milestone, 400

deliver quickly, 24

demos, 239, 254

all-hands, 403

and governance, 392

impromptu, 403

iteration/sprint, 403

of working architecture, 226

self-serve, 403

types, 403

Denning, Stephen, 31, 39, 41

deploy the solution

automate deployment, 296

goal diagram, 295

release into production, 299

release strategy, 296

validate release, 300

deployment, 291

automation, 296

cadence, 267

categories, 292

decision to, 398

diagram, 157

425

plan finalization, 292

separation of concerns, 299

shift left, 86

strategy, 267

testing, 292, 300

descaling, 11

design

evolutionary, 249

model storming, 249

set-based, 249

sprint, 254

design thinking, 38, 51, 52, 87, 95, 138,

142, 254

and accessibility, 192, 279

and quality requirements, 190

and refactoring, 259

design sprints, 254

modified impact map, 137

develop common vision

capture the vision, 209

communicate the vision, 213

formality of vision, 211

goal diagram, 208

level of agreement, 211

level of detail of vision, 210

vision strategy, 208

develop test strategy

choose testing types, 192

defect reporting, 202

development strategy, 188

goal diagram, 180

level of detail of test plan, 185

quality governance strategies, 204

quality requirements testing strategy,

190

test approaches, 186

test automation strategy, 200, 201

test data source, 199

test environments equivalency

strategy, 190

test environments platform strategy,

189

test intensity, 187

test staffing strategy, 183

test suite strategy, 198

test teaming strategy, 183

development, 245

DevOps, 10

and architecture, 149

automation, 265, 271

separation of concerns, 401

strategy, 88

disciplined agile

guidelines, 37

principles, 24

promises, 33

Disciplined Agile

as tool kit, 6

four levels, 10

Disciplined Agile Delivery, 45

getting started, 55

Disciplined Agile Enterprise, 10

Disciplined DevOps, 10

disparate ownership, 318

distribution

by geography, 120

by organization, 122

by time zone, 124

diversity, 33

documentation

architecture, 162

barely good enough, 252

continuous, 253

CRUFT formula, 252

design specification, 249

detailed, 340

effectiveness, 237

finalization, 292

guidelines, 129

high-level, 340

improving, 261

late, 253

legacy systems, 160

multipurpose, 261

of requirements, 147

of risk, 374

of test cases, 204

of WoW, 357

refactoring, 262

requirements specification, 246

426

single purpose, 261

templates, 262

vs. quality, 252

domain-driven design, 139, 158

domain expert, 66

domain model, 139, 158

Drucker, Peter, 39

DSDM, 11

due date, 231

dynamic analysis, 286

eliminate waste, 23

embrace change, 236

empathy, 38

enabling constraint, 380

enabling constraints, 263

ensure production readiness

ensure stakeholder readiness, 293

ensure technical readiness, 292

goal diagram, 291

enterprise architect, 329

enterprise architecture

and architecture owner, 65

enterprise awareness, 32, 257

motivating, 389

enterprise groups

collaborating with, 389

definition, 388

enterprise teams

collaboration with, 327

environment, 335

epic, 138

estimation

and architecture, 150

as a right, 57

need for, 165

points vs. hours, 174

units, 174

ethics, 25

event storming, 139

evolve WoW

capture WoW, 357

choose collaboration styles, 343

choose communication styles, 340

goal diagram, 338

identify potential improvements, 351

implement potential improvements,

355

organize tool environment, 360

physical environment, 338

reuse known strategies, 352

select life cycle, 344

share improvements with others, 358

tailor initial process, 350

via experiments, 357

visualize existing process, 348

executable specifications, 261

for interfaces, 162

experiment

and MVP, 95

decision to run, 398

failed, 15

failures as successes, 95

parallel, 95, 96

prioritization, 234

process improvement, 14

to learn, 31

with new WoW, 355

experimentation mindset, 31

exploratory life cycle, 95, 345

and design thinking, 38

exploratory testing, 179, 183, 186, 192,

279, 280

explore scope, 144

apply modeling strategies, 145

choose a work item management

strategy, 146

explore general requirements, 142

explore purpose, 137

explore the domain, 139

explore the process, 140

explore usage, 138

explore user interface needs, 142

goal diagram, 136

level of detail of the scope document,

147

Extreme Programming, 11, 29, 45, 75,

318

face to face (F2F)

427

communication, 340

effectiveness, 237

facilitated working session, 327

fail fast, 15, 55

feature access control, 271

feature statement, 142

feature team, 97

feature teams, 117

feature toggles, 271

feedback, 310

feedback cycle

and predictability, 36

and testing, 179

cost of change, 268

finance

governance, 133

financial

risk, 369

FLEX, 10

flow, 30, 36

flowchart, 140

follow the sun development, 124

form team

geographic distribution, 120

goal diagram, 111

member skills, 118

organization distribution, 122

size of team, 113

source of team members, 112

structure of team, 117

support the team, 125

team completeness, 118

team evolution strategy, 113

team longevity, 120

time zone distribution, 124

formal review, 204

Fowler, Martin, 4, 260

function points, 172

functional testing, 280

functionality-off release, 296

functionality-on release, 296

funding, 215

changing level of, 398

Gagnon, Daniel, 17, 103, 104

GDPR, 54

generalists, 118

generalizing specialists, 26, 39, 47, 118,

183

definition, 61

geographic distribution, 120

coordination, 331

glossary, 139

goal diagram

accelerate value delivery, 266

address changing stakeholder needs,

29

address risk, 367

align with enterprise direction, 128

coordinate activities, 316

deploy the solution, 295

develop common vision, 208

develop test strategy, 180

ensure production readiness, 291

evolve WoW, 338

explore initial scope, 77

explore scope, 136

form team, 111

govern delivery team, 387

grow team members, 305

identify architecture strategy, 151

improve quality, 258

leverage and enhance existing

infrastructure, 378

notation, 7

plan the release, 166

produce a potentially consumable

solution, 242

secure funding, 215, 216

goal driven

why, 71

goal question metric, 13, 40, 397

go-forward decision, 401

Goldratt, Eli, 31

good-faith information, 57

Google study, 33

Gothelf, Jeff, 25

govern delivery team

demo strategy, 403

enable teams, 390

428

goal diagram, 387

go-forward strategy, 398

measure team, 40, 396

milestone review strategy, 400

motivate enterprise awareness, 389

provide transparency, 392

governance, 45, 55, 87, 386

aligning a team, 132

and self-organization, 46

and transparency, 35, 392

architecture, 133, 223

consistent milestones, 102

context-sensitive, 386

control, 133

data, 133

financial, 133

go-forward decision, 398

milestones, 103

people management, 133

potential scope, 388

quality, 133, 204

release management, 133

security, 133

siloed, 390

whole team, 390

Gregory, Janet, 279

grow team members

goal diagram, 305

improve skills and knowledge, 306

provide feedback, 310

sustain team, 312

guardrails, 32, 263, 380

organizational, 18

guidance, 88, 380

and enterprise awareness, 389

guided continuous improvement, 15

guideline

adopt measures to improve outcomes,

40

apply design thinking, 38

attend to relationships through the

value stream, 38

change culture by improving the

system, 39

create effective environments that

foster joy, 38

create semi-autonomous self-

organizing teams, 39

leverage and enhance organizational

assets, 40

validate our learnings, 37

guidelines, 129, 263

adoption, 129

quality, 204

guild. See community of practice

hackathon, 306, 358

hardening sprint. See transition

hierarchy of competence, 307

high performing

organization, 14

team, 13

HIPAA, 54

host leadership, 390

hot switchover, 296

huddle, 318

humility, 33

hybrid tool kit, 45

hypothesis, 14

ideation, 83, 137

identify architecture strategy

apply modeling strategies, 155

explore the architecture, 153

goal diagram, 151

identify a delivery strategy, 152

investigate legacy systems, 160

level of detail, 162

model business architecture, 158

model technology architecture, 157

model UI architecture, 159

select an architecture strategy, 153

ilities, 144, 190, 198

ility testing, 280

impact map, 137

improve continuously, 37

improve predictability, 35

improve quality

deliverable documentation, 261

deliverable format, 262

429

goal diagram, 258

implementation, 258

reuse enterprise assets, 263

through reuse, 263

inception phase, 82

agile life cycle, 87

and continuous delivery, 90

and program life cycle, 97

process goals, 109

incremental release, 296

independent tester, 66

independent testing

on large program, 98

individuals and interactions, 305

informal review, 204

information radiator, 213

information radiators

and governance, 392

for risk, 376

infrastructure as code, 265, 271, 390

integration tests first, 276

integrator, 66

internal open source, 117

internal releases, 170

interview, 145, 155, 239

ISO, 54

IT governance

milestones, 104

iteration

cadences within program, 327

iterations

cadence, 170

ITIL, 54

Jacobson, Ivar, 15

JAD session, 155, 320

JAR session, 145

joy, 38

Kaizen, 13, 355

Kaizen loop, 12

Kanban, 45

Kanban board, 92, 318, 348

keep workloads within capacity, 36

Keller, Hellen, 57

Kerievsky, Joshua, 25

Kersten, Mik, 39

kickoff meeting, 213

Killick, Neil, 41

Kotter, John, 39

late documentation, 253

law of the customer, 31

law of the network, 39

leadership

autocratic, 390

definition, 388

host leadership, 390

servant leadership, 390

triumvirate, 67

leading metrics, 40, 397

lean change, 14

lean coffee, 358

lean defer commitment, 23

lean life cycle, 91, 345

lean principle

build quality in, 23

create knowledge, 23

delivery quickly, 24

eliminate waste, 23

optimize the whole, 24

respect people, 24

Lean Software Development, 45

lean startup, 31

Lean Startup, 95

learn fast, 30, 55

learning, 42, 335

legacy

data, 263, 384

functionality, 383

systems, 152

legacy systems

investigation, 160

LeSS, 11, 97, 232

life cycle, 345

level of detail

architecture document, 162

level of detail

scope document, 147

level of detail

430

plan, 169

level of detail

test plan, 185

level of detail

vision, 210

leverage and enhance existing

infrastructure

adopt guidance, 380

goal diagram, 378

reuse legacy asset, 379

work with legacy data, 384

work with legacy functionality, 383

work with process assets, 384

leverage and enhance organizational

assets, 40

life critical, 187

life cycle

agile, 87, 345

and process improvement, 105

choice is good, 86

continuous delivery agile, 90, 345

continuous delivery lean, 94, 345

evolution of, 105, 344

exploratory, 95, 345

how to choose, 100

lean, 91, 345

LeSS, 345

program, 97, 345

risk, 369

risk-value, 54

SAFe, 345

Scrum, 345

selection, 344

selection factors, 101

system, 83

traditional/waterfall, 345

waterfall, 81

line of business, 218

localization, 190

logical data model, 139

logical modules diagram, 158

long-lived teams. See dedicated teams

look-ahead modeling, 318

design, 249

requirements, 239, 246

look-ahead planning, 243, 318

make all work and workflow visible, 35

Mandela, Nelson, 81

manual testing, 183, 200, 276

Marick, Brian, 280

mastery, 305

maturity model, 79

McChrystal, Stanley, 39

measured improvement, 355

media richness theory, 237, 341

mentoring, 125, 306, 312

method prison, 15, 55, 352

metrics

across teams, 392

consistent categories, 392, 395

context-driven, 40

GQM, 40, 355, 397

heuristics, 40, 396

leading over trailing, 40, 397

measuring teams, 40, 396

OKR, 40, 355, 397

pull over push, 40, 397

uniqueness, 40, 396

WoW, 351

micro deploys, 296

microservices, 131, 383

middle-up-down, 38

milestone

continued viability, 104, 398, 400

delighted stakeholders, 105, 400

production ready, 104, 400

proven architecture, 103, 400

stakeholder vision, 103, 400

sufficient functionality, 104, 400

milestone review, 213

milestones, 104, 302, 400

and agile, 88

and continuous delivery, 90

and governance, 392

and lean, 92

consistency, 102

lightweight, 88

Miller's Law, 322

mind map, 137

431

mindset, 43

experimentation, 31

learn fast, 55

of Disciplined Agile, 24

minimal marketable feature, 95, 104

minimal marketable product, 95

minimal marketable release, 88, 95, 104

minimal viable product, 95

misunderstood, 104

mob programming, 153, 204, 249

and quality, 286

model-driven design, 249

model-driven development, 148, 155

model storming, 246, 318

design, 249

requirements, 239

modeling

shift right, 86

with others, 286

modified impact map, 137

monitoring instrumentation, 271

motivation, 26, 305

network diagram, 157

Nexus, 11, 97

life cycle, 345

nonfunctional requirements. See quality

requirements

nonsolo work, 204, 286

information sharing, 317

opportunistic, 343

skill sharing, 306

normalized points, 174

North, Dan, 17

notation

process goal diagrams, 75

objectives and key results, 13, 40, 397

offerings, 31

offices, 338

on-site customer, 232

effectiveness, 237

OODA, 12

open space

for architecture, 153

for coordination, 146, 154, 321, 322

for improvement sharing, 358

for requirements, 145

for skill sharing, 309

skill sharing, 306

working session, 320

open work area, 338

operational emergency, 231

operations, 88

engineers, 294

optimize flow, 30, 105

optimize the whole, 24

option list

notation, 75

ordered, 75

option table, 72

ordered decision point, 75

organize around products/services, 31

outcome, 138

outcome-driven

requirements, 148

testing, 185

vision, 209

outcomes

repeatable, 102

outsourcing, 122

testing, 183

pair programming, 204

and quality, 286

pairing, 343

parallel independent testing, 183, 276

process, 279

parallel run, 296

Parker, Ben, 58

people first, 45

roles, 46

people management

governance, 133

performance testing, 192, 280

persona, 138

personal safety, 26

phases, 82

and governance, 103

construction, 83

432

duration, 170

inception, 82

transition, 83

pilot test, 225

pilot testing, 192, 280, 292

Pink, Dan, 305, 315

PIPEDA, 54

pivot, 398

plan do study act, 12, 357

plan the release

choose estimation unit, 174

choose schedule cadences, 170

estimating strategy, 172

goal diagram, 166

level of detail of plan, 169

scheduling strategy, 168

scope of plan, 168

source of plan, 167

planning

continuous, 270

deployment, 270

heuristics, 243

iteration/sprint, 243

just in time, 243

just-in-time, 318

late, 270

look-ahead, 318

program increment, 243

rolling wave, 169

planning poker, 172

play, 38

Poppendieck, Mary, 22, 25

Poppendieck, Tom, 22, 25

postmortem, 351

potentially shippable increment, 104

practitioner presentation, 358

pragmatism, 28

predictability, 6, 35

and feedback cycle, 36

and technical debt, 35

and test first, 36

and WIP limits, 35

prescriptive framework, 11

evolution of, 16

prescriptive method, 352

principle

be awesome, 25

be pragmatic, 28

choice is good, 28, 55, 83, 289

context counts, 26

defer commitment, 23

delight customers, 25

enterprise awareness, 32

learning, 42

optimize flow, 30, 105

organize around products/services, 31

principles, 25

lean software development, 23

process

assets, 263

blade, 9

complexity, 77

documentation, 358

goal diagram, 72

goal diagram notation, 75

goal driven, 29

level of detail, 72

modeling, 351

organizational standards, 350

scaffolding, 7, 29, 71, 81, 100

tailoring, 350

visualization, 348

process decision point

accept changes, 236

access funds, 220

address a risk, 373

adopt common guidelines, 129

adopt common templates, 130

adopt guidance, 380

align with governance strategies, 132

align with roadmaps, 128

apply modeling strategies, 145, 155

artifact ownership, 318

automate deployment, 296

automate infrastructure, 271

availability of team members, 126

capture the vision, 209

capture WoW, 357

choose a deployment strategy, 267

choose a work item management

433

strategy, 146

choose an SCM branching strategy, 274

choose collaboration styles, 343

choose communication styles, 340

choose estimation unit, 174

choose funding scope, 218

choose funding strategy, 216

choose risk strategy, 368

choose schedule cadences, 170

choose testing strategies, 276

choose testing types, 192, 279

classify risks, 372

communicate the vision, 213

coordinate across organization, 327

coordinate across program, 322

coordinate between locations, 331

coordinate release schedule, 330

coordinate within team, 318

defect reporting, 202

demo strategy, 403

develop software, 245

development strategy, 188

document a risk, 374

elict requirements, 239

enable teams, 390

ensure consumability, 254

ensure stakeholder readiness, 293

ensure technical readiness, 292

estimating strategy, 172

explore general requirements, 142

explore purpose, 137

explore quality requirements, 144

explore risks, 369

explore solution design, 249

explore stakeholder needs, 246

explore the architecture, 153

explore the domain, 139

explore the process, 140

explore usage, 138

explore user interface needs, 142

facilitate a working session, 320

formality of vision, 211

go-forward strategy, 398

identify a delivery strategy, 152

identify potential improvements, 351

implement potential improvements,

355

improve deliverable documentation,

261

improve deliverable format, 262

improve implementation, 258

improve skills and knowledge, 306

investigate legacy systems, 160

level of agreement, 211

level of detail of architecture

document, 162

level of detail of plan, 169

level of detail of scope document, 147

level of detail of test plan, 185

level of detail of vision, 210

maintain traceability, 287

manage assets, 274

manage work items, 229

measure team, 40, 396

member skills, 118

milestone review strategy, 400

model business architecture, 158

model technology architecture, 157

model UI architecture, 159

monitor risks, 376

motivate enterprise awareness, 389

organization distribution, 122

organize tool environment, 360

physical environment, 338

plan deployment, 270

plan the work, 243

prioritize work (how), 231

prioritize work (what), 234

prioritize work (who), 232

provide feedback, 310

provide transparency, 392

quality governance strategies, 204

quality requirements testing strategy,

190

release into production, 299

release strategy, 296

reuse enterprise assets, 263

reuse existing infrastructure, 131

reuse known strategies, 352

reuse legacy asset, 379

434

review the architecture, 226

scheduling strategy, 168

scope of plan, 168

select an architecture strategy, 153

select life cycle, 344

share improvements with others, 358

share information, 317

size of team, 113

source of plan, 167

source of team members, 112

stakeholder interaction with team, 237

structure of team, 117

support the team, 125

sustain team, 312

tailor initial process, 350

team

geographic distribution, 120

team completeness, 118

team evolution strategy, 113

team longevity, 120

test approaches, 186

test automation coverage, 201

test automation strategy, 200

test data source, 199

test environments

equivalency strategy, 190

test environments platform strategy,

189

test intensity, 187

test staffing strategy, 183

test suite strategy, 198

test teaming strategy, 183

time zone distribution, 124

track risks, 374

validate release, 300

validate the architecture, 225

verify quality of work, 286

vision strategy, 208

visualize existing process, 348

work with legacy data, 384

work with legacy functionality, 383

work with process assets, 384

write deliverable documentation, 252

process goals, 71, 73

applying, 78

construction, 221

inception, 109

ongoing, 303

transition, 289

process improvement, 9

experimentation, 14

process-tailoring workshop, 16

share learnings, 263

process-tailoring workshop, 16, 350

and process goals, 78

process vector, 71, 75

produce a potentially consumable

solution

develop software, 245

ensure consumability, 254

explore solution design, 249

explore stakeholder needs, 246

goal diagram, 242

plan the work, 243

write deliverable documentation, 252

product backlog, 77, 146, 229

product coordination team, 322

product manager, 232

effectiveness, 237

product owner

definition, 60

effectiveness, 237

prioritization, 232

tailoring options, 68

team, 322

working with architecture owner, 65

working with team members, 62

product releases, 267

product teams. See dedicated teams

production phase, 83

production-ready milestone, 104, 400

production releases, 170

program

coordination, 322

coordination structure, 326

program increment planning, 97, 243

program life cycle, 97, 345

program manager, 322

project life cycle, 83, 289

agile, 87

435

lean, 91

program, 97

project manager, 64

and agile, 69

project team, 120

to product team, 39

promise

accelerate value realization, 34

collaborate proactively, 34

create psychological safety and

embrace diversity, 33

improve continuously, 37

improve predictability, 35

keep workloads within capacity, 36

make all work and workflow visible, 35

proof of concept, 153, 225, 249

parallel, 96

prototypes, 192, 279

prototyping, 142, 280

prove architecture early

review the architecture, 226

validate the architecture, 225

proven architecture milestone, 103, 400

psychological safety, 33, 312

pull, 229

and capacity, 37

Kanban tickets, 92

metrics, 397

single item, 92

small batch, 88

purism, 30

purpose, 305

quality

and reuse, 263

definition, 144

governance, 133, 204

guidelines, 204

requirements, 144

quality gate, 81

quality requirements, 286

testing strategy, 190

types, 190

quality testing, 280

radical transparency, 35

RAID analysis, 374

Rational Unified Process, 81

rebellions, 41

recognition, 312

reduce feedback cycle

deployment, 254

refactoring, 258

regression testing

automated, 276

regulatory, 19, 54

financial, 27

life-critical, 27

regulatory compliance, 387

separation of concerns, 299, 401

Reinertsen, Donald, 30

relative mass valuation, 172

relative points, 174

release

blackout period, 330

incrementally, 296

into production, 299

schedule, 330

window, 330

release management

governance, 133

release planning, 165, 243

and architecture, 150

cadences, 170

detailed, 169

high-level, 169

rolling wave, 169

release sprint. See transition

release stream, 267, 330

release train, 330

repeatable outcomes, 102

repeatable process

NO!, 102

reporting, 64

requirements

backlog, 146, 229

BRUF, 148

change, 227

dependencies, 231

436

detailed specification, 148

elicitation strategies, 239

envisioning, 148

exploration, 246

interview, 145

JAR sessions, 145

outcome-driven, 148

prioritization strategies, 231

quality, 144

risk, 369

specification, 246

SRS, 142

resource manager

and agile, 69

respect, 24, 25, 33

responsibilities, 58

retire phase, 83

retrospective, 351

and guided improvement, 18

improving, 78

reuse, 131, 378

and enterprise awareness, 32

and technical debt, 41

and value realization, 34, 41

strategies, 379

reverse engineering, 160

reviews, 286

information sharing, 317

milestone reviews, 392, 401

of architecture, 226

of risk, 376

of team members, 310

quality governance, 204

Ries, Eric, 31

rights, 57

risk

addressing, 373

architectural, 369

backlog, 374

burndown, 374

classification, 372

DAD vs. Scrum vs. traditional, 366

database, 374

guidelines, 129

list, 374

mitigation, 365

monitoring, 376

register, 374

risk-value profile, 365

strategies, 368

technical, 65

testing to, 179

tracking, 374

types, 369

risk burndown

example, 376

risk-value life cycle, 54, 365

roadmaps, 88, 327

and enterprise awareness, 389

business, 128

staffing, 128

team adoption, 128

technology, 128

Roddenberry, Gene, 71

role

architecture owner, 65

independent tester, 66

integrator, 66

product owner, 60

specialist, 66

stakeholder, 59

team lead, 63

team member, 61

technical expert, 66

roles, 46

and responsibilities, 390

leadership, 67

primary, 58

supporting, 65

tailoring options, 68

traditional, 69

rolling release, 296

Sachs, Leslie, 274

SAFe, 4, 11, 29, 90, 97

life cycle, 345

method prison, 15

safe to fail, 95

safety. See personal safety

scaffolding, 7, 29, 71

437

life cycle choice, 81, 100

scaling

factors, 54

strategic, 54

tactical, 53

schedule risk, 369

schema analysis, 204

Schwartz, Mark, 34

SCM. See configuration management

scope-driven schedule, 168

Scrum, 11, 29, 45

extending, 87

life cycle, 345

method prison, 15

Scrum but, 105

Scrum++, 87

terminology, 53

scrum meeting. See coordination meeting

scrum of scrums, 113, 322

secure funding

access funds, 220

choose funding scope, 218

choose funding strategy, 216

goal diagram, 215, 216

security

governance, 133

guidelines, 129

requirements, 190

risk, 369

testing, 192, 280

threat diagram, 157

Seiden, Josh, 25

self-organization, 39

and governance, 46

and joy, 38

and metrics, 40, 396

as a right, 57

self-recovery, 271

self-testing, 271

Sense & Respond, 25

separation of concerns

and deployment, 299

and DevOps, 401

serial life cycle, 81

servant leadership, 390

set-based design, 249

shall statement, 142

shared folders, 274

shift left, 84, 265

shift right, 84

ship. See release

similar sized items, 172

simplicity, 241

simulation, 192, 279, 280

single-source information, 261

skills, 118

small batches, 36

Smart, Jonathan, iv, 17, 355

Software Development Context

Framework, 26

solo work, 317, 343

solution

definition, 52

source of record, 384

specialists, 66, 118

specifications

as tests, 261

spike, 153, 225, 249

split testing, 192, 246, 280

Spotify, 29

sprint zero

see inception phase, 82

squads, 97

SRS, 142

stack diagram, 157

staffing

for testing, 183

roadmap, 128

stakeholder

access, 125

changing needs, 227, 246

definition, 59

expectation setting, 165

interaction, 86

interviews, 239

readiness, 293

satisfaction, 300

tailoring options, 68

training, 294

validation, 186

438

stakeholder proxy

product owner, 60

stakeholder vision milestone, 103, 400

standup meeting. See coordination

meeting

state chart, 140, 157

statement of intent, 211

static analysis, 286

status meeting, 318

status reports

and governance, 392

story testing, 280

strategic scaling, 54

subject matter expert

see domain expert, 66

succeed early, 55

sufficient functionality milestone, 88, 104,

400

support, 88

engineers, 294

environment, 294

sustainable pace, 312

switchover, 296

SWOT analysis, 368, 374

system integration testing, 280

system life cycle, 83

systems design, 25

tactical scaling, 53

task board, 146, 229, 318

team

ad hoc, 118, 120

availability of members, 126

be awesome, 110

collaboration, 389

colocated, 121

completeness, 118

dedicated, 32

dispersed, 121

distributed by function, 121

distributed whole team, 121

empowered, 390

evolution of, 113

high-performing, 13

leadership, 67

longevity, 120

long-lived, 120

measurement, 40, 396

organizational distributed, 122

project, 120

semi-autonomous, 39

size, 113

specialized, 118

stable, 120

structure, 117

supporting it, 125

time zone distribution, 124

vision, 207

whole, 39, 118

team lead

and management responsibilities, 64

as agile coach, 63

definition, 63

product coordination, 322

tailoring options, 68

team member

assessment, 64

availability, 126

dedicated, 126

definition, 61

skills, 118

tailoring options, 68

working with architecture owner, 62

working with product owner, 62

team of teams. See program

team organization

component team, 97

feature team, 97

large team, 97

medium-sized team, 115

team of teams, 116

technical debt, 257, 286

and architecture, 149

and predictability, 35

and reuse, 41, 378

prioritization, 234

quadrant, 260

refactoring, 258

removal, 383

technical expert, 66

439

technical risk, 65

technical stories, 144

technology roadmap, 128

template

comprehensive, 130

minimal, 130

templates, 262

adopting, 384

terminology, 53

terraforming, 338

test automation, 183

test automation pyramid, 181, 280

test environments

equivalency strategy, 190

platform strategy, 189

test planning

skills, 179

test to the risk, 179

test-after development, 188, 245, 276

test-driven development, 188, 245, 249,

276

test-first approach, 36

test-first programming, 188, 245

testing

automated, 271

deployment, 292

end-of-life-cycle, 276, 292

quadrants, 193

self-testing, 271

shift left, 84

strategies, 276

types, 192, 279

testless programming, 188, 245

tests

refactoring, 258

theory of constraints, 31

threat diagram, 157

time and materials, 216

toggle release, 296

tools

agile management, 202

bug tracker, 202

code analysis, 204

collaboration, 331

guidelines, 129

reuse, 131

schema analysis, 204

types, 360

traceability, 287

traditional life cycle, 81, 345

trailing metrics, 40, 397

training, 77, 125, 306

transition phase, 83

agile life cycle, 88

becomes activity, 90

process goals, 289

transparency

and enterprise awareness, 32

and governance, 35, 392

as responsibility, 58

radical, 35

T-shirt sizes, 174

Twain, Mark, 37

two-pizza rule, 322

criticism of, 113

Unified Modeling Language, 138

Unified Process, 45, 73, 75

governance, 87

RUP, 81

uniqueness, 335

of metrics, 40, 396

of teams, 26

unit testing, 280

unordered decision point, 75

usability, 254

design, 254

testing, 192, 254

usage scenario, 138

use case, 138

user acceptance testing, 192, 280

user experience, 254

testing, 280

user interface

architecture, 159

flow diagram, 142, 159

guidelines, 129

high-fidelity prototype, 142, 159

low-fidelity prototype, 142, 159

refactoring, 258

440

requirements, 142

testing, 280

user story, 138

map, 138

V model, 81

validate our learnings, 37

validated learning, 13, 37, 355

value

business, 34

customer, 34

value proposition canvas, 137

value stream, 9, 10

and relationships, 38

funding, 218

mapping, 140, 348, 351

vector, 71, 75

and ordered decision points, 79

version control, 274

virtual training, 306

vision statement, 209

visualize stabilize optimize, 17

visualize work, 318, 322

and governance, 392

wagile. See WaterScrumFall

walking skeleton, 225

waterfall life cycle, 81

watermelon project, 35

WaterScrumFall, 210

Weinberg, Gerry, 144

what-if discussions, 155

whole team, 58, 118, 312

distributed, 121

myth, 39

testing, 183

wicked problems, 87, 95

wiki, 360

Wikipedia, 78

[W] references, 5

work in process, 35, 146, 267

and predictability, 35

sharing, 58

work item

list, 146, 229

management, 229

pool, 146, 229

work items

types, 227, 234

workflow testing, 280

working agreement

as service level agreement, 20

external, 315, 357

internal, 315, 357

working code

and architecture, 225

working skeleton, 225

WoW

and experimentation, 13

and process goals, 71, 78

capability-driven, 71

choosing, 338

documentation, 19, 358

evolution of, 335, 338

evolve WoW goal diagram, 338

guided continuous improvement, 15

life cycle evolution, 105

life cycle selection, 100

metrics, 351

outcomes-driven, 71

process-tailoring workshop, 16

responsibility to optimize, 58

right to choose, 57

sharing, 358, 384

WSJF, 231

Zuill, Woody, 41

441

ABOUT THE AUTHORS

Scott W. Ambler is the vice president and chief scientist for Disciplined Agile at Project
Management Institute where he leads the evolution of the DA tool kit. Scott is the cocreator,
along with Mark Lines, of the Disciplined Agile (DA) tool kit and founder of the Agile Modeling
(AM), Agile Data (AD), and Enterprise Unified Process (EUP) methodologies. He is the co-author
of several books, including Disciplined Agile Delivery, Refactoring Databases, Agile Modeling, Agile
Database Techniques, The Object Primer – Third Edition, and many others. Scott is a frequent
keynote speaker at conferences, he blogs at ProjectManagement.com, and you can follow him
on Twitter via @scottwambler.

Mark Lines is the vice president for Disciplined Agile at Project Management Institute and a
Disciplined Agile Fellow. He is the cocreator of the DA tool kit and is a co-author with Scott
Ambler of several books on Disciplined Agile. Mark is a frequent keynote speaker at
conferences and you can follow him on Twitter via @mark_lines.

Choose Your WoW!
A Disciplined Agile Delivery Handbook
for Optimizing Your Way of Working

Scott W. Ambler and Mark Lines
Foreword by Jonathan Smart

Hundreds of organizations around the world have already benefited from Disciplined
Agile Delivery (DAD). Disciplined Agile (DA) is the only comprehensive tool kit available for
guidance on building high-performance agile teams and optimizing your way of working
(WoW). As a hybrid of all the leading agile and lean approaches, it provides hundreds
of strategies to help you make better decisions within your agile teams, balancing
self-organization with the realities and constraints of your unique enterprise context.

The highlights of this handbook include:

• As the official source of knowledge on DAD, it includes greatly improved and
enhanced strategies with a revised set of goal diagrams based upon learnings from
applying DAD in the field.

• It is an essential handbook to help coaches and teams make better decisions
in their daily work, providing a wealth of ideas for experimenting with agile and
lean techniques while providing specific guidance and trade-offs for those
“it depends” questions.

• It makes a perfect study guide for Disciplined Agile certification.

Why “fail fast” (as our industry likes to recommend) when you can learn quickly on
your journey to high performance? With this handbook, you can make better
decisions based upon proven, context-based strategies, leading to earlier success
and better outcomes.

A Disciplined Agile Delivery Handbook for Optimizing
Your Way of Working

Scott W. Ambler and Mark Lines

C
ho

ose Yo
ur W

oW
!

A Disciplined Agile Delivery Handbook for Optimizing Your Way of Working

S
cott W

. A
m

b
ler

and
 M

ark Lines

Scott W. Ambler and Mark Lines are cocreators of PMI Disciplined Agile and authors of
several books about agile approaches. They have decades of experience implementing
agile and lean approaches at organizations around the world and are both sought-after
keynote speakers.

Choose Your WoW!

